
May 2008
Torbjørn Skramstad, IDI
Per Håkon Meland, Sintef IKT
Lillian Røstad, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Finding Security Patterns to
Countermeasure Software
Vulnerabilities

Ole Gunnar Borstad

Problem Description
Increasing connectivity and complexity of software make security more important than ever.
Despite this, security is often an afterthought governed by an ad hoc penetrate and patch
paradigm. Security is rarely taken into account throughout the entire software development
lifecycle. There are however methods and security knowledge available that can help developers
build more secure software. The increase in reported software vulnerabilities shows that these
are not being utilised efficiently. Security modelling is a method that can help software developers
prevent security problems at an early stage of development through identification of threats,
vulnerabilities and countermeasures. Security patterns are known solutions to recurrent security
problems.

The student is to explore how security modelling can be used to utilise expert security knowledge
such as security patterns to include security throughout the development lifecycle.

Assignment given: 15. January 2008
Supervisor: Torbjørn Skramstad, IDI

Abstract

Software security is an increasingly important part of software development as the risk

from attackers is constantly evolving through increased exposure, threats and economic

impact of security breaches. Emerging security literature describes expert knowledge

such as secure development best practices. This knowledge is often not applied by

software developers because they lack security awareness, security training and secure

development methods and tools. Existing methods and tools require too much effort and

security is often given less priority in the trade-off between functionality and security.

This thesis defines a tool supported approach to secure software analysis and design.

Possible vulnerabilities and their causes are identified through analysis of software spec-

ifications and designs, resulting in vulnerability cause graphs. The security modelling

tool SeaMonster is extended to include security activity graphs; this technique is used

with vulnerability cause graphs to model vulnerabilities and security improvement ac-

tivities. A security activity graph is created to identify activities that keep the vulner-

abilities from instantiating in the final software product. The activities in the security

activity graph can be the use of security patterns. This way the above approach is used

to find a security pattern as a countermeasure to a vulnerability, and can be used with

the security pattern design templates implemented in a preliminary project (13). This

is a way of providing coupling between security expertise and software developers to

apply security knowledge in software development practice. The approach and tools

are tested and demonstrated through a development case study of a medical patient

journal system.

The main contributions of this thesis are an approach to secure software analysis and

design, an extension of the security modelling tool SeaMonster, a case study of the

approach and tools that show how security can be incorporated in early stages of

software development. The contributions are intended to improve availability of security

knowledge, to increase security awareness and bridge the gap between software experts

and software developers.

Preface

This Master thesis extends the work of (13) and concludes my MSc in Com-

puter Science at the Department of Computer and Information Science (IDI)

at the Norwegian University of Technology and Science (NTNU). It consists

of a preliminary study of current secure development practice, a developed

tool-supported approach to perform secure software analysis and design,

and a case study of this approach.

I would like to thank my subject teacher Lillian Røstad (IDI) and supervisor

Per H̊akon Meland (SINTEF) for good support and advice.

Trondheim, 29. May 2008

Ole Gunnar Borstad

Contents

List of Figures vii

List of Tables ix

I Introduction 1

1 Introduction 3
1.1 Background and Motivation . 3

1.2 Problem Statement . 5
1.3 Thesis Outline . 5

II Prestudy 7

2 Software Security Practices 9

2.1 Introduction to Software Security . 9

2.2 Pillars of Software Security . 12

2.2.1 Risk Management . 12

2.2.2 Security Touchpoints and Countermeasures 15

2.2.3 Knowledge Management . 17

3 Security Modelling 25

3.1 The Need for Methods and Tools . 25
3.2 Modelling Techniques . 29

3.2.1 Threat Modeling . 29

3.2.2 Attack Trees . 30
3.2.3 Abuse and Misuse Cases . 31
3.2.4 Vulnerability Cause Graphs . 32

iii

CONTENTS

3.2.5 Security Activity Graphs . 33

4 Countermeasures 39
4.1 Security Patterns . 39

4.1.1 Security Patterns as a Countermeasure 45

4.2 Architectural Analysis and Reviews . 48

4.2.1 Architectural Risk Analysis . 49

4.2.2 Architectural Reviews . 50

5 Sharing Security Knowledge 53

5.1 Why Sharing is Important . 53

5.2 Vulnerability Repositories . 54

5.3 Security Knowledge at Development Time 56

III Contribution 61

6 Research Agenda 63

6.1 Hypothesis and Objectives . 63

6.2 Research Process . 65
6.3 Work Plan . 65

7 Using a Countermeasure Model During Development 67

7.1 Approach and Countermeasure Modelling 67

7.2 Using Security Design Patterns . 70

8 Extending Seamonster 73

8.1 Current Status . 73
8.2 Possible Further Development . 80

9 Realisation 83
9.1 Realisation Description . 83

9.2 Requirements . 85

9.3 SeaMonster . 86
9.4 Design . 88

9.5 Implementation . 92

9.5.1 Security Activity Graph Plug-in 92

9.6 Testing . 96

iv

CONTENTS

9.6.1 Test Summary . 103

10 Case Study 105

10.1 Approach and Case Description . 105

10.2 Analysis and Design . 108

10.2.1 Countermeasure Modelling . 111

10.2.2 Design with Countermeasures . 117

IV Evaluation and Conclusion 129

11 Evaluation and Discussion 131
11.1 Contributions . 131

11.1.1 Extension of SeaMonster . 132
11.1.2 Security Pattern Design Templates 132

11.1.3 Case Study and Related Process 133

11.2 Research Method . 133
11.3 Other Initiatives . 134

12 Conclusion 137
12.1 Conclusion . 137
12.2 Further Work . 138

V Appendix 141

References 143

A Glossary 151

v

CONTENTS

vi

List of Figures

2.1 Reported Software Vulnerabilities . 10

2.2 Risk Management Framework . 14

2.3 Touchpoints and Software Artefacts . 17

2.4 Software Security Knowledge Taxonomy 18

3.1 Attack Tree Example . 30

3.2 Misuse Case Example . 32

3.3 Vulnerability Cause Graph Example . 34

3.4 Security Activity Graph Example . 36

4.1 Client Input Filters . 43

4.2 Intercepting Validator . 45

4.3 Pattern Instantiation in Enterprise Architect 46

4.4 Pattern Instantiation Workflow . 47

5.1 OSVDB Vulnerability Search Interface 55

5.2 Security Pattern Search Engine . 57

5.3 Security Vulnerability Repository Service 58

6.1 Research Method . 66

7.1 Security Knowledge Tools Approach . 68

7.2 Software Development Lifecycle With Security Modelling 69

7.3 Countermeasure Modelling Domain Model 71

8.1 SeaMonster Overview . 74
8.2 GMF Dependencies . 75

8.3 GMF Overview . 76
8.4 SeaMonster Domain Model . 77

vii

LIST OF FIGURES

8.5 VCG Data Definition Model . 78

9.1 Realisation . 84
9.2 SeaMonster Plug-ins Extended . 89

9.3 Extended SeaMonster Domain Model . 90
9.4 SAG Data Definition Model . 91
9.5 SAG Graphical Definition Model . 94

9.6 SAG Tooling Definition Model . 95

9.7 SAG Mapping Definition Model . 95

9.8 Vulnerability Cause Graph Test . 102

9.9 Security Activity Graph Test . 102

10.1 Case Study Use Cases . 107

10.2 Case Deployment . 109

10.3 High-Level Design I . 110

10.4 High-Level Design II . 110

10.5 Extended SeaMonster Screenshot . 111
10.6 Case VCG I . 112
10.7 Case SAG I . 114
10.8 Case VCG II . 115
10.9 Case SAG II . 117
10.10Intercepting Validator Class Diagram . 120

10.11Intercepting Validator Sequence Diagram 121

10.12Role-Based Access Control Class Diagram 123

10.13Pattern Instantiation in Enterprise Architect 125

10.14High-Level Design with Security Pattern 126

10.15Data Layer Design with Security Pattern 126

viii

List of Tables

3.1 Security Activity Graph Elements . 35

3.2 SAG creation step 1 . 37

4.1 Client Input Filters Consequences . 44

4.2 Risk Analysis Methods . 49

6.1 Research Objectives . 64

6.2 Work Plan . 66

9.1 Requirements Fulfilled in SeaMonster . 87

9.2 Test 1 . 96
9.3 Test 2 . 97
9.4 Test 3 . 97
9.5 Test 4 . 98
9.6 Test 5 . 98
9.7 Test 6 . 98
9.8 Test 7 . 99
9.9 Test 8 . 99
9.10 Test 9 . 100
9.11 Test 10 . 100
9.12 Test 11 . 100
9.13 Test 12 . 101
9.14 Test 13 . 101

ix

LIST OF TABLES

x

Part I

Introduction

1

Chapter 1

Introduction

Security has become relevant for all parties involved with software development due to

increased risk from malicious users and the fact that software systems are continuously

growing in size, complexity and connectivity (46). The increase of Web applications

contribute to increased exposure to attacks and software vulnerabilities are likely to be

exploited. Developing secure applications is a complex process and requires an in-depth

understanding of potential security risks. Security modelling is a process of identifying

threats, which may give the required understanding to design or identify vulnerability

countermeasures. Security patterns are widely accepted security solutions that are

fitted to a general representation, allowing the solution to be used in many different

instantiations. The increase in cataloged vulnerabilities reported by CERT statistics 1

and security pattern publications show that there is clearly a need for better software

security methods and tools.

1.1 Background and Motivation

Software security has received a lot of interest over the last several years. The field

of computer security has experienced a change of focus from reactive network-based

security approaches to the idea of engineering software to function correctly under

malicious attack (46). Common design flaws and implementation bugs are leaving

1Carnegie Mellom University’s Software Engineering Institute’s CERT Coordination Center,
http://www.cert.org/stats/fullstats.html

3

1. INTRODUCTION

critical software systems open to attacks. The ad-hoc afterthought paradigm of security

is not sufficient. To improve the security of software systems, security must be built

in from the ground up. Most software developers are not trained in software security,

and security experts do not necessarily know much about development (46). There is

a need to bridge this gap, by giving developers and security experts proper tools and

methods. Security vulnerabilities and risks need to be mitigated by countermeasures.

Security patterns are among the countermeasures as a way of reusing expert security

knowledge in software designs and implementations. The process of finding the right

pattern is however not trivial and requires a thorough understanding of threats and

exposures to software systems. A study performed by the author (13) suggests that

security pattern support in software design tools might help developers design more

secure software. Security pattern design templates were implemented in a state-of-the-

art software design tool and tested through a case study of a medical journal system. It

is pointed out that there is a need for methods and tools to support the software security

modelling process to be able to identify suited security patterns and countermeasures

in general.

There is a need for methods and tools that give developers assurance with respect to

acceptable security risk levels. What vulnerabilities are prevented and to what degree?

Security modelling tools are practically non-existent. SeaMonster (61) is an open source

security modelling tool designed for all parties involved in secure software development.

SeaMonster was initiated by NTNU/SINTEF and currently supports threat modelling

with attack trees, misuse case diagrams and vulnerability cause graphs. SeaMonster is

a prototype which with further development could become an in-depth security mod-

elling tool. Sharing of modelling results between security experts and developers may

increase security awareness and enable security work in the entire software develop-

ment process. Information about known software vulnerabilities can already be found

in several publicly available repositories or databases, such as National Vulnerability

Database (60) or SecurityFocus (74). They provide information on vulnerabilities re-

garding system administration, and are therefore not very useful at development time.

Allowing a security modelling tool to share models with development tools, i.e. de-

sign tools, by the use of repositories is expected to bridge the gap between security

4

1.2 Problem Statement

professionals and developers, and most importantly help developers create more secure

software.

1.2 Problem Statement

The overall goal of this thesis is to explore and suggest how software security can be

improved by including security throughout the development lifecycle. Emphasis will be

put on the early stages of software development, i.e. analysis and design phases, and

on using security design patterns. A preliminary study is performed to survey current

practice in the field of software security. The work will develop an approach to software

security analysis and design and implement security improvement tools to support this

approach.

1.3 Thesis Outline

This thesis is organised in the following chapters:

2 Software Security Practices

This chapter describes state-of-the-art software security practices. This is done by de-

scribing trends in software that increase the importance of secure development and

currently documented security practices. Risk management, touchpoints and counter-

measures, and knowledge management are described as pillars of software security.

3 Security Modelling

This chapter describes security modelling practice; approaches to analysing security

issues in software. The described modelling techniques are threat modeling, attack

trees, abuse cases, vulnerability cause graphs and security activity graphs.

4 Countermeasures

This chapter describes security patterns and risk analysis as countermeasures to security

attacks.

5 Sharing Security Knowledge

This chapter describes technologies and methods for sharing of security knowledge. Ex-

5

1. INTRODUCTION

amples of vulnerability repositories are given and research on sharing security knowledge

that is applicable during development is described.

6 Research Agenda

This chapter describes the research design of the thesis. This includes research hypoth-

esis, objectives, method and work plan.

7 Using a Countermeasure Model During Development

This chapter describes an approach to improve secure software development practice

based on security modelling and countermeasures in design. A countermeasure model

is introduced as a formal representation of a vulnerability countermeasure.

8 Extending SeaMonster

This chapter describes the current status and possibilities for further development of

the prototype security modelling tool SeaMonster.

9 Realisation

This chapter describes the realisation of a security modelling tool. SeaMonster is used

as a baseline.

10 Case Study

This chapter is a case study of the approach in Chapter 7 and the implemented tool de-

scribed in Chapter 9. The case study works as a test and evaluation of the contributions

in the thesis.

11 Evaluation and Discussion

This chapter evaluates the contributions and discusses other initiatives in security im-

provement tools and methods.

12 Conclusion

This chapter concludes the thesis. The contributions are summarised and possibilities

for further work are presented.

6

Part II

Prestudy

7

Chapter 2

Software Security Practices

Software security is receiving increased interest among researchers and practicioners.

The increased interest is a result of increase in reported security-related software vul-

nerabilities and incidents of security breach (48) as shown in Figure 2.1 1. This chapter

describes current activities in the discipline of software security. The need for change in

computer security practice is described by three important trends in modern software;

connectivity, extensibility and complexity. Risk management, security touchpoints and

knowledge management are described as the three pillars of software security. Any

organisation developing software can implement these pillars to build a cost-effective

software security program.

2.1 Introduction to Software Security

Software security is about engineering software to function correctly under malicious

attack. Reducing the risk of security breaches by reducing consequences of attacks, i.e.

isolating information from its users, might not be feasible in today’s software where

availability of information is key. The practice of software security tries to reduce

exposure to threats by reducing vulnerabilities to an acceptable level. The integration of

system and security engineering, leading to software security, is still in its infancy. Some

of the first books on software security practice were published in 2001 (5; 86). Progress

1Carnegie Mellom University’s Software Engineering Institute’s CERT Coordination Center,
http://www.cert.org/stats/fullstats.html

9

2. SOFTWARE SECURITY PRACTICES

Figure 2.1: Reported Software Vulnerabilities - Security-related vulnerabilities
reported to CERT/CC over several years

is however being made; big companies like Microsoft are recognizing software security

as an important part of software engineering by developing the Security Development

Lifecycle (53) and threat modelling techniques (80).

Computer system security is not a new field of computer science. Over three decades

ago, the Multics operating system was designed as a secure system by the use of design

principles such as access control lists and identification and authentication of users (68).

Computer security has often been regarded as a branch of communication security which

is based on cryptographic techniques and network theory (42). This view has produced

several reactive network-based security approaches, such as firewalls, intrusion detection

and cryptographic protocols (1). The term reactive in this setting means the approaches

are added during system deployment or production; they are not designed as part of the

software. Why is this no longer sufficient to produce secure computer systems? Three

trends in computing systems have a large influence on the growing security issues (48):

Connectivity: The Internet has increased the connectivity of computing systems. A

few decades ago, software systems were internal to organisations, limiting the number

of users to employees and potentially customers of the organisation. Most of today’s

software is however exposed to the Internet through a Web browser, introducing billions

10

2.1 Introduction to Software Security

of potentially malicious users. The exposure to threats is increased dramatically which

increases the probability that software vulnerabilities will be exploited.

Extensibility: Systems have to a larger degree become extensible. Extensible systems

evolve in an incremental fashion by accepting updates or extensions, sometimes referred

to as mobile code (50). Examples are Web browser plug-ins that allow viewing of

different document formats. Word processors, spreadsheets, e-mail clients are extensible

through scripts, applets and plug-in components. Extensible software is attractive

because it may increase market share through rapid deployment. Extensible systems

are however prone to create software vulnerabilities as unwanted extensions.

Complexity: Modern software systems are growing in size and complexity. Defect

rate tends to increase with code size (32). This holds for security vulnerabilities as well

(46). Analysing, developing and proving that a software system is free of problems, is

probably not feasible at some point of complexity.

Along with the above trends, security is often a trade-off versus features and time to

market. For users and system administrators, security interferes with usability and ef-

fectiveness. Different groups involved with software think of security in different terms.

Software developers might think of code quality while administrators think of system

management and network-based security approaches. With the trends of modern com-

puting systems that make security harder to achieve, there is a need for methods and

tools to deal with security at a higher level. All phases of the software development

lifecycle should be included to build security in from the ground-up. Studies performed

on e-business applications show that 70% of identified security defects are design related

(37). Computer security must deal with software vulnerabilities.

Software security problems can be classified with some basic terminology. McGraw (46)

proposes the following categorisation:

Defect: Defects include both implementation vulnerabilities and design vulnerabili-

ties. A defect is a problem that may pass unnoticed or possibly surface in a fielded

system and impose major consequences.

11

2. SOFTWARE SECURITY PRACTICES

Bug: A bug is an implementation-level software problem. Bugs are fairly simple

implementation errors that can easily be discovered and fixed. The use of automated

tools to detect bugs is quite common and is a security best practice (45).

Flaw: Flaws are introduced at a higher level than bugs. A flaw will be instantiated

in code, but is usually introduced at the architecture or design level. Automated tools

to detect flaws do not yet exist.

Practice shows that at least 50% of software security problems are flaws (37; 46). This

shows that security is about more than coding issues, fixing code-level bugs will only

solve half the problem at best.

2.2 Pillars of Software Security

McGraw (46) defines applied risk management, software security touchpoints (best-

practices applied to software artefacts) and knowledge as the three pillars of software

security. The pillars can be applied by any organisation involved with developing

software to any software development methodology. A cost-effective security program

can be built by applying the pillars in a gradual manner. The pillars are described in

the following sections.

2.2.1 Risk Management

A risk management strategy seeks to find a cost-effective way to practical security.

There is no perfect defense in software simply because it would be too expensive (42). A

cost-effective risk management strategy balances the cost of applying a security program

and the risk of loss when software is compromised by attackers. Risk management is a

business-level decision support tool with an underlying goal; avoiding potential software

flaws before they materialise into vulnerabilities. The cost of software flaws tend to

increase as they are discovered later in the development lifecycle (47).

A complete risk management framework is composed of architectural risk analysis and a

management strategy. Applying risk analysis at the architectural level is a best-practice

and one of the to be mentioned touchpoints in Section 2.2.2. In security communities

12

2.2 Pillars of Software Security

it is often referred to as threat analysis, security design analysis or security modelling,

the latter is described in Chapter 3. A risk management strategy tracks and mitigates

risk through the whole software development lifecycle (SDL).

McGraw (46) defines a Risk Management Framework (RMF) as the heart of building

secure software systems. The RMF identifies and tracks risk through a software de-

velopment project as touchpoints are applied and the risk landscape is changing. The

notion of risk management is not characteristic for software security alone, most fi-

nancial firms have a formal risk management department (28). Risk is defined by the

following relationship:

R = PxI

The probability (P) is the likelihood that a risk will materialise and become a problem.

The impact (I) is a metric for the business consequence of the problem. Quantification

of risk is essential in any risk management process.

The RMF defined by McGraw consists of five stages:

1. Understand the business context. Risk is tied to an organisation’s business

goals. Understanding these goals is important in order to be able to make deci-

sions and do prioritisation. If a risk does not impact the goals of the organisation,

it is not worth analysing.

2. Identify Business and Technical Risk. Technical risks are grounded in soft-

ware artefacts and are identified by the use of touchpoints. A technical risk should

be mapped to business goals through business risk such as financial loss, loss of

reputation etc. This process identifies what software flaws might potentially harm

the business.

3. Rank the Risks. This stage creates an output list of weighted risks that can

be used as a priority scheme. Risks are ranked according to their probability and

impact.

4. Define the Risk Mitigation Strategy. Security analysts are good at finding

technical problems, but not at finding the correct solutions. This is apparent

by the use of checklists of what not to do instead of describing what should

13

2. SOFTWARE SECURITY PRACTICES

be done (46). A risk analysis is worthless without a good mitigation strategy.

This strategy defines a cost-effective set of activities described by metrics such as

implementation cost and time or probability of success. The mitigation strategy

should also include validation techniques that are used to assure that mitigation

is successful. The validation techniques employ financial metrics such as return

on investment and risk coverage.

5. Mitigate and Validate. The last stage executes the mitigation strategy of phase

4. Software artefacts are validated to assure that they do not bear unacceptable

risk.

1 Understand the Business Context

2 Identify the Business and Technical Risks

3 Rank the Risks

4 Define the Risk Mitigation Strategy

5 Mitigate and Validate

Figure 2.2: Risk Management Framework - Five stages make up the looped RMF
process

The stages above should be applied in a continuous loop, as shown by Figure 2.2. There

are risks connected to all stages of software development, and so the output of the five

stages of the RMF should be kept updated. For example the RMF can be executed

once for every stage of the SDL.

14

2.2 Pillars of Software Security

2.2.2 Security Touchpoints and Countermeasures

Software security is more than traditional security software features like cryptographic

protection of communications. Security is a system-wide property; it requires a combi-

nation of security features and design for security. This is one of the reasons security

has to be built in. Software developers have adopted security best practices to build

more secure software systems (45). Some of these practices are referred to as software

security touchpoints. These touchpoints apply a best practice to software artefacts

during development and are independent of the applied software development process.

McGraw et al. (85) defines seven touchpoints that includes common software devel-

opment artefacts; requirements and use cases, architecture, design, testing, code, test

results and deployment. The touchpoints are: Code Review, Architectural Risk Analy-

sis, Risk-Based Testing, Penetration Testing, Abuse Cases, Security Requirements and

Security Operations. The touchpoints are described briefly in the following paragraphs:

Code Review

Artefact: Code

Code is reviewed for implementation bugs. Static analysis tools are often applied to

discover common vulnerabilities (17). Higher level problems, i.e. architectural, are

hard to discover during code review, and requires architectural risk analysis.

Architectural Risk Analysis

Artefact: Design and specification

Security analysts search designs for flaws in software architecture. Possible attacks

against the system, weaknesses and ambiguity in specifications are identified. The

identified risks are then handled by a risk management process.

Penetration Testing

Artefact: System in target environment

Architectural risk analysis should give input to a penetration test of fielded software

in its target environment. Penetration testing uncovers environment and configuration

problems which can be fixed late in the development cycle. It is the most commonly

applied software security best practice (9).

Risk-Based Security Testing

Artefact: Units and System

15

2. SOFTWARE SECURITY PRACTICES

Security testing should include two strategies: 1) testing of security functionality by

functional testing and 2) risk-based security testing. The latter should be based on

attack patterns, risk analysis and abuse cases. To combine the knowledge of software

architecture and common attacks, it is essential to think like an attacker when per-

forming the tests.

Abuse Cases

Artefact: Requirements and use cases

Use cases describe the system’s behaviour and interaction with legitimate users. Ex-

panding the use case model with abuse cases describes how the system reacts to an

attack by malicious users. Applying abuse cases allow focus to be put on security in

early stages of software development. Abuse cases are further described in Section 3.2.3.

Security Requirements

Artefact: Requirements

Security must be grounded in software requirements and specify system functions in all

possible circumstances of use, legitimate or malicious (51). The security requirements

should cover both security functionality, such as access control, and non-functional

characteristics relevant to security.

Security Operations

Artefact: Fielded system

Secure design can not replace the need for security operations such as network security.

Attacks happen regardless of secure design and implementation. Security operations

in the fielded system allow feedback of knowledge on attacks and exploits, logging

procedures is a good example. This knowledge should be cycled back into the software

development process.

Figure 2.3 shows where the touchpoints are applied. Although the figure resembles a

traditional waterfall model, iterative approaches are very common today which means

the touchpoints could be applied several times during a development project.

Applying the touchpoints is a way of putting software security into practice by changing

the way organisations develop software. In order to reach a state of security, there

need to be some protection or prevention of vulnerabilities. A general term for the

16

2.2 Pillars of Software Security

Code Review

Requirements and
Use Cases

Feedback from the
field

Tests and Test
ResultsCodeTest PlansArchitecture and

Design

Risk-Based
Security TestsRisk Analysis

Abuse Cases

Sequrity
Requirements

Risk Analysis

Penetration Testing

Security
Operations

Figure 2.3: Touchpoints and Software Artefacts - The touchpoints are mapped to
their related software development artefacts

protection and prevention is a countermeasure. Touchpoints are countermeasures to

software vulnerabilities. Countermeasures are described further in Chapter 4.

2.2.3 Knowledge Management

McGraw (46) defines knowledge management as the third pillar of software security.

With the recent changes in computer security towards a paradigm of building security

in, there is a lack of practitioners and experts. Training in security practices and

sharing of security knowledge is increasingly important, meanwhile there are not enough

experienced practitioners to apprentice software architects and developers. Knowledge

management can reform low-scale training techniques by compiling security knowledge

and sharing it widely.

A security knowledge taxonomy groups security knowledge into related catalogues.

This organisation seeks to improve understanding and provide a standard for security

knowledge artefacts. The catalogues also help in mapping knowledge to phases of the

software development lifecycle. Figure 2.4 shows a knowledge schema relating seven

catalogues (11). Principles, guidelines and rules are advice of things to do and not to

do when developing secure software systems. These catalogues span from high-level

architectural principles such as the principle of least privilege (67), to code-level rules

17

2. SOFTWARE SECURITY PRACTICES

such as avoiding insecure string functions in C. Attack patterns, exploits and vulnera-

bilities help recognise and to deal with problems related to security attacks. They are

useful in security analysis and development for example in abuse cases. Historical risk

includes risks and vulnerabilities. These are descriptions of specific incidents from real

software systems and projects. Historical risks include business impact and are useful

for finding similar problems during development of software.

Attack Pattern Exploit

Principle

Guideline

Rule

Vulnerability Historical Risk

1

1

Figure 2.4: Software Security Knowledge Taxonomy - Organisation of software
security knowledge

The catalogues are described in the following paragraphs.

Principles

A principle is a statement of general security wisdom. Principles are derived from expe-

rience, and are useful for diagnosing architectural flaws and practicing secure software

development in general.

Relevant artefacts:

• Security requirements

• Security architecture

18

2.2 Pillars of Software Security

• Software design

Guidelines

A guideline is a recommendation for things to do or to avoid during software develop-

ment. Guidelines are defined for a specific technical context such as operating system

or programming language. Guidelines can uncover and prevent architectural flaws and

implementation bugs.

Relevant artefacts:

• Security requirements

• Software design

• Code

Rules

A rule is a recommendation for things to do or to avoid at the level of syntax. Rules

are for specific programming languages and can be used in code analysis tools. Rules

uncover implementation bugs.

Relevant artefacts:

• Code

Attack patterns

An attack pattern is developed by studying large sets of software exploits. The patterns

can identify the risk that a given exploit will occur in a system. Attack patterns are

useful in designing abuse cases and security tests.

Relevant artefacts:

• Abuse cases

• Software design

• Security test plan

• Penetration tests

19

2. SOFTWARE SECURITY PRACTICES

Historical risks

Historical risks are identified in actual software development. These risks are useful

in software development to identify potential security issues at an early stage, because

little analysis is needed since actual risks in similar situations are already documented.

Relevant artefacts:

• Software architecture

• Software design

• Test plans

• Deployed software

Vulnerabilities

Vulnerabilities are the result of defects in software that can be exploited by malicious

users to abuse the system and its resources. They are useful for understanding how

software vulnerabilities impact the security of a computer system.

Relevant artefacts:

• Software architecture

• Software design

• Penetration test

• Fielded system

Exploits

An exploit is an instance of an attack on a computer system that takes advantage of a

specific vulnerability.

Relevant artefacts:

• Penetration test

• Fielded system

20

2.2 Pillars of Software Security

Documentation of security knowledge is currently dominated by low-level checklists and

taxonomies (46). McGraw et al. presents a taxonomy of security coding errors (84)

with seven groups of errors referred to as kingdoms. The taxonomy is designed to help

programmers avoid security coding errors and to be able to identify possible sources

of errors. They are also expected to increase security awareness and help developers

understand how their work affects security. The taxonomy is a set of rules which are

best fit as input in an automated tool such as static code analysers. Static analysis tools

analyse source code without running the program, highlights coding errors or proves

properties of the code (24).

The following are the seven kingdoms of security coding errors, in order of importance

to software security:

1. Input Validation and Representation

2. API Abuse

3. Security Features

4. Time and State

5. Error Handling

6. Code Quality

7. Encapsulation

Each kingdom consists of a collection of coding errors that share a common theme. The

kingdoms are briefly explained in the following paragraphs. The coding errors described

below are a small excerpt from the taxonomy. See (46) for the complete taxonomy.

Input Validation and Representation

Client input should not be trusted because it may contain malicious data. Input vali-

dation and representation problems are caused by metacharacters, alternate encodings,

numeric representations or lack of input validation in general. Input validation should

be done by a white list technique (33).

21

2. SOFTWARE SECURITY PRACTICES

• Buffer Overflow: The result of writing outside the bounds of allocated memory.

This can lead to corrupted data, software crash or cause the execution of an attack

payload.

• Command Injection: Executing commands from an untrusted source. This

can lead to system misuse or attacks to a third party such as legitimate system

users.

API Abuse

Application Programming Interface (API) abuse is caused by violations of the contract

between caller and callee of an API. Examples are making false assumptions about the

behaviour of the API callee, or when the API callee does not correctly implement the

defined interface.

• Dangerous Function: Never use unsafe functions, i.e. functions that have

documented security vulnerabilities.

• Exception Handling: Incorrect handling of exceptions can cause the software

to crash.

Security Features

This kingdom includes features such as authentication, access control, confidentiality,

cryptography and privilege management. The assumption that software security is

about security features alone is a big misconception. Implementing security features

incorrectly is quite common (27).

• Password Management: Storing a password in plaintext.

• Missing Access Control: Access control checks are not performed in all exe-

cution paths.

Time and State

Time and state is relevant to distributed computing. Modern computer systems in-

clude multi-core, multi-CPU or distributed computers interacting and interchanging

information. Time and state errors are related to unexpected interaction between dif-

ferent threads and processes.

22

2.2 Pillars of Software Security

• Deadlock: Inconsistent locking routines can lead to deadlocks potentially stalling

or crashing the system or making resources unavailable.

• Race Conditions: There is a time window between a resource property is

checked and when the resource is used. This can be exploited to launch an attack

or corrupt data.

Error Handling

Security defects related to error handling are very common (48). Not handling errors

at all or insufficient handling introduces great security risk because of two reasons: 1)

errors may give away too much information to possible attackers and 2) improper error

handling may lead to unexpected system state.

• Empty Catch Block: Failing to provide handling of exceptions enables attackers

to induce malicious system behaviour unnoticed.

• Catch NullPointerException : Catching of NullPointerException should not

be used instead of programmatic checks to prevent dereferencing a null pointer.

Code Quality

Code quality affects the system behaviour. Poor code quality can lead to unpredictable

system behaviour, providing attackers a way of stressing the system in unexpected

ways.

• Memory Leak: Failing to free memory results in resource exhaustion.

• Null Dereference: Dereferencing a null pointer causes the program to raise a

NullPointerException.

Encapsulation

Encapsulation with respect to security is about drawing boundaries and setting up

barriers between programming entities. Example boundaries are between classes with

different methods.

• Debug Code: Programmers use debug code to quickly test small units of code.

Debug code might create unintended entry points if not removed before deploy-

ment.

23

2. SOFTWARE SECURITY PRACTICES

• Comparing Classes by Name: Comparing classes by name is not sufficient to

decide whether they are the same or differing classes.

There are other collections and taxonomies of security knowledge in security literature

(12). The Seven Kingdoms define a middle ground between rigorous academic studies

and ad hoc collections based on experience (46). The focus on simplicity and practicality

is important with software security taxonomies because there is a lack of experienced

practitioners, and increasing security awareness among software developers is beneficial.

Another popular and useful list is the OWASP Top Ten (26). This list presents a

consensus about what the most critical Web application security flaws are. The list is

developed by a variety of security experts from around the world. The book ’19 Deadly

Sins of Software Security’ (52) is a collection of 19 programming flaws and shows how

to fix them.

Sharing of security knowledge between different parties involved with secure systems

development is an ongoing topic in software security research. It is likely that this will

become an increasingly important part of security knowledge management. Sharing

of security knowledge is of special interest to the work described in this thesis so it is

devoted a chapter of its own, see Chapter 5.

24

Chapter 3

Security Modelling

Security modelling is a collective term for modelling techniques of security concepts

such as threats, attacks and vulnerabilities. These techniques improve understanding

of security issues so they can be dealt with throughout the development lifecycle. This

chapter describes security modelling as a method and its rationale with respect to

software development. The following modelling techniques are described: attack trees,

abuse and misuse cases, vulnerability cause graphs, security activity graphs and threat

modelling.

3.1 The Need for Methods and Tools

Complex software is dealing with critical information and controlling systems in mil-

itary, financial, medical and governmental organizations, making consequences of a

security breach very dangerous. The complexity of software is related to attack ability.

Security faults are a subset of quality faults, and quality faults tend to be a function of

code complexity which is again proportional to code volume (32; 46). Developers need

to understand and deal with how their complex programs affect security.

Studies performed on e-business applications show that 70% of found security defects

are design related (37). The same study also showed that 47% of the application secu-

rity defects should be regarded as severe design flaws, which means they are exploitable

and could cause loss of revenue. This is connected with the fact that security is rarely

25

3. SECURITY MODELLING

introduced in early stages of software development. The current focus is to detect prob-

lems rather than preventing them (49). Developers are not creating insecure software

because they do not know how to code, flaws are introduced at a higher level of soft-

ware development. A thorough understanding of security at a higher level is needed

and abstractions other than code units should be introduced to enable developers to

gain control on security at the level of a complete software system.

A lot of different terminology is used in security literature; in the following some core

security concepts are defined to remove any ambiguity. The definitions (70) are essential

to software security and security modelling, and will be used extensively throughout

the thesis:

• Asset - Assets are information or resources which have value to an organization

or person.

• Stakeholder - an organization or person who places a particular value on assets.

• Security Objective - a security objective is a statement of intent to counter threats

and satisfy identified security needs.

• Threat - a potential for a security breach of an asset.

• Attack - an attack is an action that violates the security of an asset.

• Vulnerability - is a flaw or weakness that could be exploited to breach the security

of an asset.

• Countermeasure - action taken in order to protect an asset against threats.

• Risk - a risk is the product of two parameters: the probability (P) that a successful

attack occurs and Impact (I), i.e. expected loss. This is expressed by the formula

R = P * I

The definitions are related and together they form a framework where software devel-

opers are able to gain an understanding of their software and its environment with

respect to security. Security modelling is a method where these concepts are evaluated

by the use of various modelling techniques in a systematic fashion. Security modelling

26

3.1 The Need for Methods and Tools

integrated in the software development process, is expected to improve security in soft-

ware by helping developers prevent potential attacks (8). The importance of security

modelling is based on the following assumptions:

Increased security awareness. Security failure data should be fed into some qual-

ity assurance process, as is usually the case with other software quality requirements.

Software engineers generally do however not use security failure data to improve the

security of the software they develop (59). Providing up-to-date information on se-

curity problems to developers is an important step towards building secure software.

This information should be combined with practices to reduce the security problems.

Software developers can not design, develop and test secure software systems without

knowing the security issues (34). Developers need to be aware of how security faults are

introduced in artefacts throughout the whole software development lifecycle, including

the early stages with requirements and design, and the threats to a deployed software

product.

Need for security methods and tools. Most current approaches to software secu-

rity apply some best practices, e.g. secure programming techniques, in a rather ad hoc

manner. Experience shows that these approaches help prevent software vulnerabilities,

hence the term best practice, there is however a need for completeness in understanding

and dealing with security issues. An ad hoc security program will not give assurance

regarding what threats and vulnerabilities that are dealt with by each security prac-

tice. Security practices, techniques and tools should be applied throughout the whole

development process in a systematic fashion to help development of secure software sys-

tems (7). Systematic prevention of software vulnerabilities requires an understanding

of the causes of vulnerability, the threats they expose and how they can be exploited

by attackers. Without this understanding, developers have no assurance that security

risks are in fact mitigated by the chosen countermeasures. Structuring security prac-

tices, techniques and tools is a way of achieving a predictable and measurable secure

development process.

Security modelling is a method that may change the ’penetrate and patch’ behaviour

of security, because it applies to all stages of development and its output is meant to

27

3. SECURITY MODELLING

be kept updated as threats change. Increased security awareness is a direct benefit

of security modelling. It is unlikely that implementing vulnerability countermeasures

without a thorough security model will produce secure software, because choosing the

right countermeasures requires an understanding of threats and exposures. This is

backed up by The Open Web Application Security Project (OWASP), which states

that threat modelling is essential for design of new Web applications to be able to

mitigate the important security risks (66). Security modelling provides a context for

use of software security tools because it defines a foundation that can be used to select

proper tools and methods.

Security modelling tools can be used to model security effectively and enables sharing

of security knowledge between parties involved with secure software development. The

specific functionality of security modelling tools is not defined in security literature be-

cause security modelling tools are practically non-existent. Security modelling is done

with general-purpose drawing tools (8), such as UML (31) tools. Work is ongoing to

make software development tools make use of security models from security modelling

tools. This is very relevant to the work presented in this thesis and will be further

described in Chapter 5. The lack of tools is based on the fact that security modelling

is mainly practiced by a small number of security experts and researchers. Software

developers often use models, e.g. when working with architecture, design and deploy-

ment, but security rarely takes part in these models because languages and tools do

not support security modelling. Microsoft’s Threat Modeling Tool (55) is an exception

to this, and allows users to create threat models for software applications. The tool

captures threat models in machine-readable form for storage and updating. The Threat

Modeling Tool is designed for Microsoft’s threat modeling method, which narrows the

potential use cases and makes it less suited for general security modelling as described

in this thesis. Prototype tools such as SeaMonster, which is an open source security

modelling tool, shows that there is interest among security researchers to develop new

modelling tools for security. SeaMonster is described in detail in Chapter 8.

28

3.2 Modelling Techniques

3.2 Modelling Techniques

There are several security modelling techniques, which in general can be grouped by

their output: vulnerabilities and their causes, threats, attacks or countermeasures. The

aim of the techniques is to gain an understanding of security issues to be able to deal

with them throughout the software development lifecycle.

3.2.1 Threat Modeling

Threat modeling (80; 83) is a part of the Microsoft Trustworthy Computing Security

Development Lifecycle (43). Threat modeling is usually performed in the design or

specification phase of a development process, to understand a product’s threat envi-

ronment and defend against potential attacks. Six activities define the threat modeling

process:

1. Scoping the process. Threat modeling an entire product is often too complex.

Logical groups of functionality is grouped into components, which are then subject

to threat modeling.

2. Gathering background information. Information from the component’s spec-

ifications are gathered. Examples are use cases, deployment configuration, de-

pendencies on other components, features or technologies and implementation

assumptions.

3. Describing the component. This activity gives a security-focused description

of the component’s design. Entry points (interfaces with other software, hardware

and users) are identified and given a trust level which describes the degree to which

the entry point can be trusted to send or receive data. A list should be made

of trust levels required to gain access to protected assets. Microsoft recommends

the use of data-flow diagrams (DFDs).

4. Obtaining threats. Threats can be obtained through a brainstorming meet-

ing, analysing DFDs to identify possible threats. The acronym STRIDE (spoof-

ing, tampering, repudiation, information disclosure, denial of service, elevation of

29

3. SECURITY MODELLING

privilege) can be used to help remember the types of threats a component might

be exposed.

5. Resolving threats. Decide what actions are needed to resolve the threats, and

execute them.

6. Following up. Tracking your own dependencies, verifying your assumptions and

communicating security requirements. Changes made to the design should also

be tracked throughout the product development cycle to ensure that the changes

do not introduce holes in the security threat mitigations.

3.2.2 Attack Trees

Attack trees (AT) (69) describe possible threats or attacks to a system. By identifying

how a system can be attacked and understanding the attacker, we may be able to

design and implement proper countermeasures to thwart the attacks. Attack trees

model attacks as a tree structure, with the goal as the root node and possible ways of

achieving the goal as leaf nodes. The goal is a successful attack. Alternatives can be

represented by OR nodes, AND nodes express that several steps are needed to perform

an attack. A metric representing the cost or feasibility of an attack can be added

to perform calculations on likelihood. Possible metrics are possible/impossible and

monetary cost. Figure 3.1 shows an example attack tree with three ways of achieving

unauthorized access to a system; by guessing a legitimate user’s password, performing

a buffer overflow attack and by performing a cross-site scripting attack (XSS).

Figure 3.1: Attack Tree Example - Achieve unauthorized access

30

3.2 Modelling Techniques

You create an attack tree by selecting a goal as the root node. Identify possible attacks

for the root node, and then continue down the tree. Repeat for all nodes until you

have exhausted possible attacks, and possibly pass the tree to someone else so they

can add their attacks. Making useful attack trees requires thinking like an attacker,

often referred to as a black hat approach in security literature (46). A black hat means

applying desctructive thinking to abuse a computer system, to understand the motive,

method, tools and desired results of attacks.

3.2.3 Abuse and Misuse Cases

Use cases (23) are used during elicitation and documentation of functional requirements

to capture a system’s normative behaviour, but there is little support for other types

of requirements such as security. McDermott and Fox (44) suggested abuse cases in

1999 to express threats using standard UML use case notation. Sindre and Opdahl (76)

suggested misuse cases which are negative use cases specifying undesirable behaviour in

a system. Security requirements are elicited by documenting how the system is to react

on exceptional cases such as illegitimate use. A use case can describe a countermeasure

that mitigates a threat; the misuse case. A misuse case will exploit or hinder legitimate

use cases. Abuse and misuse cases force developers to think like attackers, what do

they want to achieve and how. Alexander (4) advocates using abuse and misuse cases

to conduct threat analysis during requirements analysis. The differences in abuse and

misuse cases are not important for this work, so the term misuse case will be used to

cover these techniques. Røstad (77) has suggested to further specify the misuser, the

actor that initiates misuse cases, as inside or outside attacker. This is adopted in further

misuse cases in this thesis. Figure 3.2 shows an example misuse case diagram. An

insider, the Developer, has forgot to remove debug code before software release, leaving

a backdoor entry point to the program, shown as Backdoor in the figure. Vulnerabilities

can be exploited thus introducing a threat to the system. The threat is represented by

the misuse case Steal payment credentials which exploits the Backdoor vulnerability.

31

3. SECURITY MODELLING

Figure 3.2: Misuse Case Example - Online payment

3.2.4 Vulnerability Cause Graphs

A vulnerability cause graph (VCG) (15) is used to analyse causes of vulnerabilities to

prevent them in future software development. The causes of a vulnerability and their

relationships are represented as a directed acyclic graph, with a single vulnerability as

the root node. Internal nodes are causes, events and conditions during the software

development process that may be the cause of a vulnerability. The semantics of a VCG

is based on the predecessor-relationship: to prevent a cause C, either C itself or all

predecessors of C must be mitigated. To prevent a vulnerability, all predecessors of the

root node in the vulnerability’s VCG must be prevented. There are four types of nodes

in a VCG:

• Simple node: represents a condition or event that may contribute to a vulnera-

bility.

• Compound node: combination of causes that form a VCG on their own.

• Conjunction: conjunction of two or more nodes.

32

3.2 Modelling Techniques

• Root node: the vulnerability modelled by the VCG.

Countermeasures can be derived by identifying activities that mitigate causes in the

graph. The goal is to prevent the vulnerability to materialise by using the information in

the structure of the VCG (6; 7). VCGs model vulnerabilities and need a supplementary

technique to identify countermeasures. Identifying causes to software vulnerabilities is

however an important first step towards more secure software.

Figure 3.3 shows an example VCG of the vulnerability group Injection flaws. These

flaws allow user-supplied data to trick the system into executing unintended commands.

In the example, there are three main causes: 1) The cause Accepts malicious input al-

lows attackers to pass malicious data to the system, including executable code and data

formats not supported by the system. An underlying cause for this liberal input scheme

is Lack of input restrictions in system documentation. 2) Unrestricted privileges give

attackers the ability to perform system operations they are not intended to. Injected

commands should not be able to perform restricted operations such as file access. 3)

The third cause, Use of unsafe APIs, are programming interfaces that are not con-

sidered secure. Examples of these are exploited character escaping functions. Code

complexity is identified as an underlying cause. Abundant code complexity makes the

program code difficult to review by security engineers, allowing use of unsafe APIs to

slip through quality assurance.

3.2.5 Security Activity Graphs

A security activity graph (SAG) (7) relates activities during software development to

prevent potential vulnerabilities. By creating a SAG for every vulnerability, the goal

is to identify countermeasures to prevent potential security vulnerabilities. SAG is a

graphical representation of terms in first order predicate calculus, the graphs allow

better readability and annotation with metadata (7).

The graph contains a tree structure, with the vulnerability as the root node. Other

nodes are activities that influence security and take on boolean values. There are

no restrictions on activities other than that they are meant to improve the security

of a software product. The security touchpoints in Section 2.2.2 are good examples

33

3. SECURITY MODELLING

Figure 3.3: Vulnerability Cause Graph Example - Injection flaws

of possible activities. An activity is true if it is implemented perfectly during software

development and is false otherwise. Activities can be arranged by software development

phases such as analysis, design, implementation, testing and deployment. It is possible

to assign cost metrics to activities; this might help produce a feasibility or ranking

scheme. Relationships between nodes can be defined using logic gates which are a

function of their input. Table 3.1 defines the graph elements and their logic equivalents.

Security activity graphs are tightly coupled with vulnerability cause graphs, and can

be created from a VCG by a structured method following three simple steps:

1. Enumerate mitigation techniques for each cause.

2. Create SAG fragments for each set of mitigation techniques.

3. Combine the fragments to create a complete graph.

The following is an example which follows the above method to produce a SAG from

the vulnerability cause graph in Figure 3.3. Figure 3.4 shows the resulting graph.

Step 1:

Mitigation techniques are identified for each cause of the VCG, shown in Table 3.2.

34

3.2 Modelling Techniques

Graphical representation Function Logic Equivalent

AND

AND gate F = I1 ∩ I2 ∩ ... ∩ In

OR

OR gate F = I1 ∪ I2 ∪ ... ∪ In

S

SPLIT gate F1 = I, F2 = I, ..., Fn = I

C

Activity F = C

Name

Vulnerability N/A

Table 3.1: Security Activity Graph Elements - Gates are a logical function F of
their input I

Step 2:

SAG fragments are created for each set of mitigation techniques. One fragment is

created for the input validation techniques and one for the changes in the use of APIs.

Validation of input and rejection of invalid input are connected and must be applied

in conjunction. Enforcing least privilege is added because all system access should be

governed by a minimal privilege policy. The first fragment is an AND-node connecting

these three techniques. The second fragment is a conjunction of static code analysis and

use of safe APIs. Enforcing least privilege is equally important, so it is combined with

35

3. SECURITY MODELLING

Figure 3.4: Security Activity Graph Example - Modelling injection flaws

the other two techniques. As in the first fragment, the resulting graph is an AND-node

connecting the three techniques.

Step 3:

The fragments are combined into a security activity graph. The graph shows that to

mitigate injection flaws, two paths are possible: 1) a conjunction of input validation,

invalid input rejection and enforcing least privilege activities, or 2) a conjunction of

static code analysis, use of safe APIs and enforcing least privilege. It should be noted

that this example is not a complete analysis of injection flaw vulnerabilities. The

resulting SAG is only intended as an example of this modelling technique.

For a given SAG there are likely several different sets of activities that satisfy the

semantic function, ideally one wants to find the optimal set. A set could be optimal in

terms of cost, efficiency, implementation speed etc. Automatic selection would require

tool support for cost modelling and finding an optimal solution to the semantic function

of the SAG.

VCGs and SAGs primary use is to understand vulnerabilities such that developers are

able to identify and implement countermeasures, and finally producing secure software.

These modelling techniques require tool support because the graphs are likely to be

36

3.2 Modelling Techniques

Cause Mitigation Description
Lack of input restrictions Validate input All possible legal input to the

system is specified through re-
quirements.

Accepts malicious input Reject invalid input Input which do not pass the
validation mechanism is re-
jected.

Unrestricted privileges Enforce least privilege All users should have a mini-
mal set of privileges when con-
necting to backend systems
such as databases or commu-
nication modules. A minimal
set defines the needed priv-
ileges to perform the opera-
tions the system is designed
for.

Code complexity Static code analysis Analysing complex code can
effectively be done by code
analysis tools. These tools
can detect use of unsafe APIs
or implementation bugs.

Use of unsafe APIs Use safe APIs Strongly typed parameterized
query APIs with placeholder
substitution markers. These
handle all data escaping so use
of unsafe escaping functions is
not necessary.

Table 3.2: Creating a Security Activity Graph - Step 1

large and hard to maintain or keep track of (7).

37

3. SECURITY MODELLING

38

Chapter 4

Countermeasures

In Section 3.1 a countermeasure was defined as an action taken in order to protect

an asset against threats and attacks. Such actions are not limited to technical software

artefacts, but can refer to any action designed to reduce the risk of attacks and software

misuse. As an example, a countermeasure to the threat of inside attacks is to dismiss

any disloyal employee. The countermeasures in this chapter is limited to those rele-

vant to the software development process and related artefacts, and includes security

patterns and reviews.

4.1 Security Patterns

A software pattern describes a recurring problem that arises in specific contexts, and

presents a well-proven generic solution. The solution can form multiple concrete instan-

tiations, and has become a pattern through many successful implementations, proving

itself as a best practice. The use of patterns has been adopted in the security field. A

substantial collection of security patterns has been developed (41; 71; 78). The defi-

nition of a security pattern (72) has the same key characteristics as general software

patterns:

A security pattern describes a particular recurring security problem that

arises in specific contexts and presents a well-proven generic scheme for its

solution.

39

4. COUNTERMEASURES

Patterns appear to be valuable to secure systems development due to several advan-

tages:

• Security knowledge is structured in an effective and understandable way. The

knowledge in a pattern is constructive rather than presenting a laundry list of

what not to do.

• There is currently a large gap between theory and practice in the field of software

security, because developers do not know much about security and security experts

do not necessarily know much about development (46). Security professionals are

primarily concerned with the security of a system while system developers main

concern is to get the system working. Patterns can be used to bridge the gap

by making developers able to analyse the trade-offs between security and other

requirements without the presence of a security professional (40).

• The pattern representation is known to most software developers (71). This

enables patterns to be used as an effective medium for learning security knowledge.

• Much of the focus on computer and information security until now has been on

low-level implementation and reactive network-based countermeasures, such as

firewalls and cryptographic techniques. Patterns can be applied at any level from

enterprise issues to architecture and design or low-level implementation such as

programming language specific constructs. The pattern approach can help extend

the security focus to include all phases of secure systems development.

Proper documentation of patterns is necessary to be able to understand and discuss

them. This documentation should provide all the needed information to know when the

pattern can be applied and how to implement the pattern. There are many variations

of pattern descriptions, the one adopted here is taken from (14) because it is thorough

and descriptive. This format suits a wide range of patterns, including security patterns:

Name

The name of the pattern.

Also Known As

Possible other known names.

40

4.1 Security Patterns

Example

An example that demonstrates the problem in practice and shows why this

pattern is useful.

Context

The situations in which the pattern may apply.

Problem

The problem addressed by the pattern.

Solution

The fundamental solution provided by the pattern. Fundamental implies a

generic principle which can be utilised in different instances.

Structure

A detailed specification of the structural aspects of the pattern. This often

refers but is not limited, to software components and their relations in some

appropriate notation.

Dynamics

Scenarios describing run-time behaviour of the pattern.

Implementation

Guidelines for implementing the pattern.

Example Resolved

Discussion of important aspects with respect to the example.

Variants

A brief description of variants or specialisations of the pattern.

Known Uses

Examples of use in existing systems.

Consequences

Benefits and possible liabilities by using this pattern.

See Also

References to related patterns. This could be patterns that solve similar or

related problems or patterns that improve potential liabilities introduced

by the applied pattern.

41

4. COUNTERMEASURES

It should be noted that not all elements of this description is needed for every pattern.

The following is an example security pattern from (41), dealing with input in Web

applications. The pattern representation adopted in this example is inspired by (14).

Name
Client Input Filters

Also Known As
Untrusted Client, Server-Side Validation, Sanity Checking

Example
Internet banking require customers to fill in account numbers and other personal
information through forms. The server receiving the user supplied information does
not trust the client side. When the client initiates a transaction, the server checks
that all the parameters are valid before executing it.

Context
Any application accepting user input. The main concern is Web applications.

Problem
Web sites are highly interactive applications which require the user to submit some
type of input. The server-side application logic can not treat the input as trusted
because there are no guarantees that the input follows the format and range origi-
nally intended by application designers. This is because input from clients can be
tampered with and it may be submitted by non-legitimate users.

Solution
All data provided by the client should be treated as malicious and filtered at the
server. Client-side input validation can be used to give proper feedback through the
user interface, but all validations must be repeated on the server. The server-side
filter must deal with the following (the list is not exhaustive):

• Text input submitted by the user should be filtered to eliminate scripting
tags and other questionable content.

• Suspiciously long URLs and header fields should be dropped and possibly
logged.

• Calculated fields provided by the client should be ignored and recomputed at
the server when the data is processed.

• Sensitive data that must be stored on the client should be kept in an en-
crypted, tamper-proof form.

Client filters should be able to modify requests before delivering them to the in-
tended object. If the data cannot easily be fixed, the client filter should reject
or simply drop the request. All filtering events should be reported to the central

42

4.1 Security Patterns

logging mechanism, although many will be benign, they might indicate a pattern
of attempted misuse. If a filter detects an obvious attempt to sidestep the security
of the system, the request should be blocked and the event reported.

Structure
Input validation can be integrated into the requested objects, or they can be im-
plemented as separate objects. The second alternative is less efficient but easier to
manage. In either case, the essential is that the filters are always invoked before
any processing of the client input. The structure of the pattern is described in
Figure 4.1. A logging mechanism is added with a dotted connection because this
component is not a part of this pattern but is recommended as a related pattern.

-request(parameters)

Filter

Client

Server

Object 1

Object n

Logger

...

System

Figure 4.1: Client Input Filters - Pattern structure

Consequences
Consequences of using the pattern are provided benefits and potential liabilities.
See Table 4.1.

Related Patterns
Log for Audit

43

4. COUNTERMEASURES

Impact on Consequence
Availability If overly sensitive, this pattern can have an adverse effect on avail-

ability, preventing legitimate users from using the site.
Integrity This pattern greatly enhances the integrity of the data processed

by a web site.
Manageability The management burden could be increased if overly sensitive san-

ity checks result in a high number of false reports of attacks that
must be investigated.

Performance This pattern will incur a small performance penalty, since it re-
quires some time to perform checks. If data is stored in encrypted
form on the client, encrypting and decrypting the data will also
exact a performance hit.

Cost This pattern has fixed implementation costs. However, if overly
sensitive it could increase the customer service burden on the site.

Table 4.1: Client Input Filters consequences

Security literature describes a wide range of security expert knowledge as security pat-

terns. Some categorisation scheme is useful to narrow scope and remove ambiguity

when referring to different types of patterns. Security patterns can be organised in two

groups (88):

• Structural patterns. These patterns will affect the implementation of the final

product, and are represented as structures and interactions. They are used when

defining software components.

• Procedural patterns. These patterns are used for process improvement to support

development of enterprise level security strategy. Risk assessment often plays a

central part in these patterns.

The organisation above is very coarse-grained and can be further defined by introduc-

ing dimensions of development stage or software abstraction level. Structural patterns

are often defined as architectural or design patterns. These patterns deal specifically

with problems at their respective levels of software development. This thesis is con-

cerned with structural patterns, specifically design patterns. Unless otherwise is stated,

security pattern will refer to security design pattern in following chapters.

44

4.1 Security Patterns

4.1.1 Security Patterns as a Countermeasure

The work in (13) introduced security design patterns in software design tools to help

developers create more secure software by increasing security awareness and making

security a part of the design lifecycle. Design templates of two recognised security

patterns were implemented in a design tool. The templates were applied in a case

study, which showed how security vulnerabilities could be avoided at the design level

by giving software developers security pattern tool support. This work is an important

prerequisite for this thesis and is described in the following paragraphs.

Enterprise Architect (EA) (82) is a tool for designing and constructing software systems.

EA supports UML design pattern templates which are UML documents that can be

instantiated in software designs. The pattern support was extended with security pat-

tern templates of the Intercepting Validator (78) and Role-Based Access Control (71)

patterns. Figure 4.2 shows the Intercepting Validator template in EA. The template

is a UML class diagram describing the static structures of the pattern. The pattern

instantiation dialogue is shown in Figure 4.3. Pattern instantiation allows patterns to

be merged with existing designs or creating a new design starting with the pattern

structures.

Figure 4.2: Intercepting Validator - Class diagram of the Intercepting Validator in
Enterprise Architect.

The implemented pattern templates were tested in a case study. The case defined a sys-

tem for administration of medical patient journals. The system requirements specified

45

4. COUNTERMEASURES

Figure 4.3: Pattern Instantiation in Enterprise Architect - Instantiation dialogue

that confidentiality and integrity of medical information must be ensured. The case

study implementation was to show how security patterns can be instantiated through

the software design tool in order to countermeasure vulnerabilities and mitigate security

risk. An ad hoc instantiation process, shown in Figure 4.4, was designed to demonstrate

the use of security pattern templates. Although this process can not be defined as a

complete threat and countermeasure identification process, it resembles the stages fol-

lowed and artefacts produced in most software development projects. Use cases, system

requirements (already specified by the case) and initial design documents were used in

a risk analysis where assets and threats and were identified. The STRIDE categories

were used to identify the following threats: data disclosure and data tampering. Input

validation and access control mechanisms were identified as countermeasures through

the risk analysis. The process did not define any method or tool to identify these coun-

termeasures based on threats. The countermeasures were simply chosen based on the

author’s software security knowledge and various vulnerability countermeasure sources

(26; 71). After mechanisms to mitigate the risks were identified, the security patterns in

the design tool were searched for a matching countermeasure mechanism and pattern.

This was performed by browsing the descriptions of the pattern templates. The chosen

pattern templates were then instantiated in a software design. The templates were

instantiated in the medical journal system which was then implemented as a prototype

46

4.1 Security Patterns

Web application. The mitigation of security risk was demonstrated by failed injection

attacks to the system.

1: Use Cases and Requirements

2: Threat Modelling

3: Pattern Search

4: Pattern Instantiation

5: Remaining Design

Pattern
implements

countermeasure

Pattern and
countermeasure

mismatch

Figure 4.4: Pattern Instantiation Workflow - Pattern instantiation through design
tools

The described case study displays a shortcoming in current secure systems development.

There are methods to analyse and deal with security problems, i.e. risk management

frameworks, threat modelling and security modelling, but there is a lack of methods and

tools to tie these methods to activities in software development phases, i.e. design and

implementation. Software developers do not have support for security modelling and

47

4. COUNTERMEASURES

secure development techniques in development tools. This is contributing to the security

knowledge gap. The author found that the security pattern templates of the described

work will not provide enough assurance that the chosen patterns countermeasure the

identified security risks. There is a need for a tool and method to assure that developers

have chosen the right security patterns to counter vulnerabilities.

4.2 Architectural Analysis and Reviews

The analysis methods and reviews presented in this section are based on software archi-

tecture and design. The objective of these methods is to gather data to be able to make

decisions based on knowledge about vulnerabilities, threats, impacts and probability.

Modern approaches to risk analysis emphasise the importance of an architectural view

and starting the analysis process early in the development lifecycle (22). This allows

security defects to be avoided or mitigated at an early stage. Equally important is that

security is meaningless without context. Security analysis and improvement activities

must be coupled with the actual software product being built. Security can not be

achieved just by adding some standard add-on security package. Founding security

risk management on architecture and design artefacts allow explicit definitions of what

needs to be secured, from who and what the software must be secured and for how long

it can be considered secure.

When performing architectural analysis and reviews, choosing the right people is impor-

tant (22). Risk analysis requires an understanding of potential business impact which

depends on laws, regulations and business model. The system developers might build

assumptions about the system and possible security risks, often based on implicit as-

sumptions which might make them overlook possible sources of risk. Analysts external

to the design and development team might help challenge these assumptions. System

experts do however hold a lot of knowledge which is useful to analysis and reviews,

advocating a combination of internal and external team members.

48

4.2 Architectural Analysis and Reviews

4.2.1 Architectural Risk Analysis

A distinction should be drawn between risk analysis and risk management (46). Risk

analysis is about identifying risk and finding mitigation strategies. Risk management

refers to tracking and mitigating risks through the development lifecycle. This section

describes the basis of architectural risk analysis which has earned its importance to

security through the high account of design-related security problems (22; 37).

There exists a wide range of risk analysis methods, some of these are briefly described in

Table 4.2. Some methods calculate a value of an information asset and determine risk

as a function of loss and probability; others use checklists of threats and vulnerabilities

to determine a risk measurement.

Method Developer Reference
Commercial

STRIDE Microsoft (35)
Security Risk Management Guide Microsoft (54)
ACSM/SAR Sun described in (30)
Cigital’s architectural risk analysis process Cigital (46)

Standards-Based
ASSET NIST http://csrc.nist.gov/asset
OCTAVE SEI (3)

Table 4.2: Risk Analysis Methods

McGraw (22) describes a prototypical analysis approach with a set of activities. These

activities are rather general and can be fitted to suit a wider range of methods. It is

valuable in capturing the essence of a risk analysis method, and describes the following

activities:

Learn as much as possible about the target of analysis. Study the specifica-

tions, architecture and design documents. Include possible other artefacts, e.g. code.

Identify threats and sources of attack. The learning activity is suited for brainstorming

sessions and group discussion.

49

4. COUNTERMEASURES

Discuss security issues surrounding the software. Discuss how the system works

and note areas of disagreement or ambiguity. Identify vulnerabilities, exploits and

possible fixes. Understand planned security controls because these may introduce new

security risks.

Determine probability of compromise. Describe attack scenarios for exploits of

vulnerabilities. The likelihood of compromise is a function of protection and threat

capacity.

Perform impact analysis. Determine impacts on assets and business goals.

Rank risks. Risk analysis is a decision-support tool. Ranking the risks is a way of

guiding the judgement calls to be made regarding risk mitigation.

Develop mitigation strategy. Recommend specific countermeasures to mitigate

risks.

Report findings. Describe risks with attention to impact. It is important that

decision makers have the information needed to spend limited mitigation resources

effectively.

4.2.2 Architectural Reviews

Deliverables of software development activities can be made subject to software reviews

which is a process examining the deliverable and providing approvals or comments. The

review can be performed by any interested party, e.g. project personnel, managers,

users, customers or owners. The deliverable can be any technical document such as

project plans, budgets, requirements documents, specifications, design, source code etc.

The goal of performing a review is to assess the quality of the software product and

possibly identify defects or weaknesses. The review process may be governed by a set of

written rules, the degree of formality in different review methods vary greatly as will be

seen from the summary of review and inspection techniques. The IEEE Standard for

50

4.2 Architectural Analysis and Reviews

Software Reviews (36) defines a common set of activities for software reviews. These

are closely linked to the software inspection process developed by Fagan (25). The

activities are:

• Overview: Qualified personnel ensures that reviewers understand the goals of the

review, procedures and the available materials.

• Preparation: Examination of the review materials for anomalies, i.e. defects

according to the review goals.

• Examination: Reviewers pool their findings to agree on the status of the reviewed

artefact.

• Rework: Assigned personnel, possibly the developer of the artefact, performs

actions to correct anomalies and defects.

• Follow-up: Ensure that corrective actions are applied correctly.

There are obvious benefits to architectural software reviews, one is that it enables early

detection of defects (63). It enables developers to identify defects earlier than what is

possible during testing and operations feedback. Gilliam et al. (29) recommends intro-

ducing a form of security review in every phase of the software development lifecycle.

McGraw (47) points out the importance of external analysis, i.e. by someone outside

the design team. Having an independent view of the system is important because the

designers and developers are often sceptical that their system may have flaws. Software

reviews are a way of performing external analysis.

Performing architectural risk analysis and reviews is knowledge intensive (46). Re-

viewers need some security expertise to be able to identify anomalies. This knowledge

may come from the experience of the reviewers or more explicit sources such as security

checklists, vulnerability/threat/attack lists or compilations. Examples are the STRIDE

(35) model of risk categories, attack patterns (33), design principles (86) or security

issues in widely used frameworks such as .NET or Java.

The IEEE 1028-1997 standard defines five types of reviews:

• Management review - a review performed by management to evaluate work status.

51

4. COUNTERMEASURES

• Technical review - qualified technical personnel reviews the software product for

discrepancies between the product and specifications.

• Inspection - a formal review where reviewers follow a process to find defects.

• Walkthrough - an informal review where the product author leads reviewers

through the product and the reviewers may point out defects or ambiguities

through questions or comments.

• Audit - the goal of this review is to evaluate compliance with specifications,

standards, contracts or other criteria.

52

Chapter 5

Sharing Security Knowledge

This chapter gives a rationale for sharing security knowledge and describes state-of-

the-art mechanisms such as widely used vulnerability repositories. The chapter also

describes past and present work in the connection between security knowledge repos-

itories and development tools and methods. Sharing security knowledge and applying

it during development is a hot topic in current software security research.

5.1 Why Sharing is Important

Security knowledge management is a set of activities concerning collection, encapsu-

lation and sharing of expert security knowledge. The sharing of security knowledge

is perhaps the most important because of the current state of software security. This

is based on two observations: 1) the importance of expert knowledge in software se-

curity and 2) the knowledge gap between software practitioners and security experts.

Being able to recognise situations where common attacks can be applied is crucial in

effective risk assessment (47). This requires expert knowledge. The literature describes

a security knowledge gap (46; 85) between software developers and security experts

or engineers. There are sources of security knowledge, they are however not available

or accessible to those who need them the most; those directly involved with software

development. Sharing of security knowledge can build consensus on best practices and

standardisation of secure development methods and tools. This collaboration is critical

53

5. SHARING SECURITY KNOWLEDGE

to making software security a unified practice (46). Work in sharing security knowledge

includes defining knowledge constructs such as taxonomies, catalogues etc., and tools

and methods.

5.2 Vulnerability Repositories

There are several publicly available vulnerability repositories or databases. They pro-

vide informal descriptions, catalogues and information about patches to repair vul-

nerabilities. SecurityFocus (74) is among the most well-known sources of security in-

formation on the Web, with over 18 million page views a month. The SecurityFocus

vulnerability database provides vulnerabilities that can be browsed by vendor, title,

version and CVE. CVE is a dictionary of publicly known information security vul-

nerabilities and exposures (58). The dictionary provides a list of standardised names

for vulnerabilities, and enables data exchange between security products by the use

of CVE’s common identifiers. BugTraq is a mailing list related to the SecurityFocus

community for disclosure and discussion of computer security vulnerabilities. The Na-

tional Vulnerability Database (60), hosted by NIST, is a U.S. government repository of

security vulnerability management data. Similar to SecurityFocus, vulnerabilities can

be searched by several attributes; keywords, vendor, version, CVE etc. The database

contains over 29.000 CVE vulnerabilities and 13.000 vulnerable products. The Open

Source Vulnerability Database (OSVDB) (62) is an independent vulnerability database

aiming to provide accurate and unbiased technical information about security vulnera-

bilities. OSVDB keeps mappings to CVE and can be exported to XML so that anyone

can keep a local copy of a OSVDB snapshot. The advanced search interface of the

database is very sophisticated with its vulnerability classification scheme, see Figure

5.1.

Other vulnerability repositories and mailing lists are the Secunia Vulnerability Archive

(73), ISS X-Force Alerts and Advisories (81), Packet Storm Advisories (2), CA Vulner-

ability Information Center (10), Cerias’ CoopVDB (16) and the Open Web Application

Security Project (65). Each of these repositories does not individually cover all aspects

of a vulnerability, and they lack a common format (64). The chosen representations of

vulnerabilities are varying from repository to repository, and the informal descriptions

54

5.2 Vulnerability Repositories

Figure 5.1: OSVDB Vulnerability Search Interface - Advanced search

55

5. SHARING SECURITY KNOWLEDGE

are difficult to utilise in automated tools. The vulnerabilities are usually system specific

and are counter measured by patches, making the repositories more useful for system

administrators than software developers. There is a lack of knowledge sharing reposi-

tories and architectures for general software security knowledge that can be applied at

development time.

5.3 Security Knowledge at Development Time

Schumacher et al. (72) describes a prototype security pattern search engine as a security

improvement tool. The engine is implemented as an expert system with three main

components:

• Security Knowledge Base - contains core security concepts and taxonomies to-

gether with a mapping to the structure of security patterns.

• Inference Engine - processes the user queries, applies the query to the knowledge

base according to a set of inference rules, and presents answers.

• User Interface - Web interface receiving user input and presenting output.

Figure 5.2 shows the use cases of the security pattern search engine. The system seeks

to help users solve typical security problems at different layers of abstraction. Users

can search and explore patterns and simulate pattern scenarios which explore the con-

sequences of applying a pattern. The knowledge base is maintained by security experts,

shown as Expert and Pattern Author in the figure. A pattern author can access a library

of predefined pattern elements, e.g. threats or countermeasures. A Hierarchy Builder

is intended to identify relations between patterns to compute a pattern hierarchy.

SHIELDS (75) is an EU project launched in January 2008 concerned with detection

and elimination of software vulnerabilities through security models. The objective is

to increase software security by providing software practitioners methods and tools to

prevent occurrences of known vulnerabilities. The project will conduct research and

development on modelling software security vulnerabilities and countermeasures, cre-

ating a repository for storage and distribution of the models, and extending security

56

5.3 Security Knowledge at Development Time

Expert

Pattern Author

User

Security Pattern Search Engine

Edit Rules

Edit Queries

Edit Concepts Explore Patterns

Search Patterns

Simulate Scenario

Edit Patterns

Access Library

Hierarchy Builder

Figure 5.2: Security Pattern Search Engine - Use cases

57

5. SHARING SECURITY KNOWLEDGE

development tools and methods to use the repository. The technical approach of the

project is based on a knowledge repository known as the Security Vulnerability Repos-

itory Service (SVRS) (8). The service is to be made internet-accessible and defines the

following use scenarios through supported security tools:

• Security experts can represent and publish formal vulnerability models that can

be used by development and security tools.

• Help developers detect and remove software vulnerabilities from within their de-

velopment tools.

• Gather metrics about vulnerabilities detected and removed, to be used in process

improvement intitiatives.

• Provide information about design and code conformance to security policies.

Figure 5.3 shows the SVRS and suggested tools for software security.

Figure 5.3: Security Vulnerability Repository Service - Main components and
actors

58

5.3 Security Knowledge at Development Time

The SVRS enables software practitioners and development tools to stay up-to-date with

the latest security knowledge. The repository approach is designed for fast dissemina-

tion of security information from security experts to software developers, hoping to

bridge the security knowledge gap. The SHIELDS project will also create a SHIELDS

Verified certification to help development organisations document that known security

vulnerabilities are not present in their software products. The certification refers to

quality processes and mechanisms.

59

5. SHARING SECURITY KNOWLEDGE

60

Part III

Contribution

61

Chapter 6

Research Agenda

This chapter describes the research design of the thesis. A hypothesis and research

objectives are stated in the light of previous work and tendencies in current software

development practices. A research process is tailored to fit the hypothesis and a work

plan is included which describes milestone activities.

6.1 Hypothesis and Objectives

The preliminary study showed a shortcoming in state-of-the art secure software devel-

opment practice; security is rarely taking part throughout the entire software lifecycle.

Many companies treat security as an add-on typically done after an application is de-

ployed. This is confirmed by studies performed on e-business applications, showing

that 70% of found security defects are design related and 47% of these defects can be

regarded as severe design flaws (37). This suggests that the old security approach based

on security software and a patch-and-repair strategy is not enough. We need to focus

on the applications themselves. The lack of security work in early stages of development

is partly based on lack of methods, tools and security awareness in general, as pointed

out in the preliminary study. Although design flaws impose severe security risks, fix-

ing them does not have to be expensive. We believe that the flaws can be avoided in

the design phase if software developers possess secure development methods and tools.

This thesis will introduce new security improvement tools to improve current software

63

6. RESEARCH AGENDA

security practice. The following hypothesis is stated:

Including security improvement tools and methods in early software de-

velopment lifecycle phases will contribute to development of more secure

software by mitigation of vulnerabilities during design, increasing software

security awareness and bridging the software security knowledge gap.

The research objectives (RO) of this thesis are described in Table 6.1.

RO1 Develop a security modelling tool that enables software security experts and
practitioners to create models of software security vulnerabilities and counter-
measures.

RO2 Develop software design tool artefacts that provide reusable security expert
knowledge in a format that is applicable at development time. This tool should
apply the output of the tool described in RO1 to guide design of vulnerability
countermeasures in software.

RO3 Document the tools as a proof of concept and evaluate contributions by per-
forming a case study of the tools in objectives 1-2.

Table 6.1: Research Objectives

It is hypothesised that the use of these tools will contribute to development of more

secure software by systematic prevention of software vulnerabilities. A security mod-

elling tool is expected to increase security awareness by making security a part of early

software development stages and supporting the identification process of vulnerability

countermeasures. A design tool supporting security will bridge the gap between secu-

rity professionals and software developers. The use of these tools in combination should

contribute to assure that the designed software countermeasures possible vulnerabili-

ties.

Note that measuring the assurance given by performing security modelling is without

scope of this work. This work is focused on the benefits of tool support to increase

awareness and accessibility of security knowledge.

64

6.2 Research Process

6.2 Research Process

This thesis is an extension of previous work by the author (13). Figure 6.1 shows an

activity diagram of the research process. The Prerequisite Work phase provides the

basis for the research to be performed and contains the previous work and a prelim-

inary study. A hypothesis is stated after the prerequisite work is completed. The

implementation phase will develop a security modelling tool as described in research

objective 1. Along with the implementation, a model describing how the modelling tool

can be combined with software design tool artefacts such as security pattern templates

will be defined. The implementation is followed by a case study which is designed to

document the use cases of the implemented tools, and ultimately describe how security

can be incorporated in early stages of a software development lifecycle. The case study

functions as a tool supported secure development proof of concept. The hypothesis is

finally evaluated by a qualitative discussion. This is a notable limitation of the research

process, which is necessary to limit the scope. The chosen research process will not be

able to quantify the achieved results and effects of made contributions. Validation is

made subject to further work.

6.3 Work Plan

Table 6.2 shows a work plan with milestone activities, a workload estimate in number of

weeks and percentages of total workload, and activity documentation references. The

plan is used to implement the research process by guiding the work and limiting scope.

65

6. RESEARCH AGENDA

Hypothesis

Implementation

Case Study

Evaluation

Prerequisite Work

Figure 6.1: Research Method - Activity diagram

Activity Estimate Reference
Review previous work 0.5 2.5% Found in (13)
Problem description 1 5% Chapter 1
Preliminary study 6 30% Chapter 2 through 5
Summary of previous work and need of fur-
ther research

0.5 2.5% Section 4.1.1

Define hypothesis and research process 1 5% Chapter 6
Define tools context of use and requirements 1 5% Chapter 7, Section 9.2
Implementation 4 20% Chapter 9
Case study 2 10% Chapter 10
Evaluation of method and results 2 10% Chapter 11
Concluson and further work 2 10% Chapter 12
Total 20 100%

Table 6.2: Work Plan

66

Chapter 7

Using a Countermeasure Model

During Development

This chapter gives a high-level description of suggested security improvement methods

and tools of this thesis. The approach is based on applying security modelling to identify

possible weaknesses in early software development artefacts, which may lead to security

vulnerabilities. The output of the security modelling is used to apply countermeasures

in software design. Countermeasure modelling is introduced as a model to describe

vulnerabilities, countermeasures and their relations. This thesis will use the suggested

approach to identify suited security design patterns.

7.1 Approach and Countermeasure Modelling

The need to incorporate security throughout the software development lifecycle (SDL)

has been identified to improve software security practice in general. This thesis seeks

to do this by providing methods and tools that enable developers to apply security

information and knowledge during development. Specifically, the goal is to avoid and

mitigate possible software vulnerabilities early in the development lifecycle. Developers

should have a sense of assurance that they have implemented countermeasures that

target the right issues.

This thesis suggests a process to fill the security void early in the SDL. There exist

67

7. USING A COUNTERMEASURE MODEL DURING
DEVELOPMENT

methods to analyse and handle security in specification and design phases, e.g. ar-

chitectural risk analysis, security requirements, abuse cases etc. The output of these

activities is to a lesser extent used in software development to produce more secure

software. There is a lack of tools and integration between these security improvement

activities and software development activities, creating a gap between security exper-

tise and secure software development practice. We need methods and tools to integrate

security improvement activities throughout the SDL.

The approach in this work is based on a simple model shown in Figure 7.1. Security

experts compile security knowledge in various formats to be shared in some repository.

Software development tools with security improvement features are developed to make

use of the repository, helping developers to create more secure software.

Shared Security Knowledge

Security Experts

Developers

Development and
security tools

Figure 7.1: Security Knowledge Tools Approach - Security knowledge and tools
at development time

68

7.1 Approach and Countermeasure Modelling

The model defined in Figure 7.1 is a general architecture that can be used for a wide

range of security knowledge formats and tools. The focus of this work is to identify

and mitigate software vulnerabilities. The approach is based on tool supported security

modelling of possible vulnerabilities and countermeasures and applying the output of

the modelling during software design. Figure 7.2 visualises this approach as an add-

on to a simple development lifecycle which resembles the classic Waterfall model (87).

Although this figure shows a sequential process, the approach is suited for an iterative

development process as well. After requirements are specified, security modelling is

performed to gain an understanding of possible security issues with the software to be

built. The security modelling activity takes requirements and possibly design docu-

ments as input, as shown by the backwards arrow from Design to Security Modelling.

The security modelling identifies potential vulnerabilities, threats and countermeasures.

The countermeasures are used in the design phase to prevent security problems.

Security Modelling

Requirements ImplementationDesign Test

Countermeasures

Operation

Figure 7.2: Software Development Lifecycle With Security Modelling - The
chosen approach incorporates security modelling in the SDL

The Security Modelling activity in Figure 7.2 produces output which is based on coun-

termeasure modelling; a modelling activity which seeks to analyse software artefacts

to identify possible vulnerabilities and determine suited countermeasures. Figure 7.3

shows a meta-model describing countermeasure modelling concepts and relations. The

Vulnerability class describes a software vulnerability; a flaw or weakness in a software

artefact that could be exploited. A vulnerability can be a class of vulnerabilities describ-

ing a group of similar vulnerabilities that stem from the same type of flaw or weakness,

69

7. USING A COUNTERMEASURE MODEL DURING
DEVELOPMENT

or a specific instance. A vulnerability is described in a VulnerabilityModel which is made

to understand the vulnerability, i.e. what are the causes and how this vulnerability is

instantiated in this specific instance. A VulnerabilityModel is realised by a vulnerabil-

ity cause graph. The VulnerabilityModel is related to a CountermeasureModel which

describes how the vulnerability can be avoided or mitigated. A CountermeasureModel

is realised by a security activity graph. The VulnerabilityModel and Countermeasure-

Model classes can both be decomposed, as shown by the ’part of’-relation. There are

possibly several countermeasures that can be combined to make a Countermeasure-

Model, these are defined as CountermeasureItems. A CountermeasureItem is a security

improvement strategy, activity or artefact such as the touchpoints described in Section

2.3 or countermeasures in Chapter 4. A CountermeasureItem is further divided into a

ToolItem or a DocumentItem. ToolItems are used by tools, examples are static analysis

rules, test configurations and design templates. DocumentItems are used by humans,

examples are: security requirements, checklists and inspection techniques. Counter-

measure modelling is performed by using security modelling techniques to map these

meta-modelling concepts to instances in the software being analysed.

7.2 Using Security Design Patterns

This thesis focuses on security design patterns as the countermeasure and limits the

scope of CountermeasureItems to security pattern templates as described in (13). Se-

curity patterns are made available to developers through security pattern design tem-

plates, countermeasure modelling is meant to help developers identify and apply the

right pattern before a flaw is instantiated in software design. The suggested approach

with tool support is designed to provide coupling between security expertise and devel-

opment practice as described in Figure 7.1.

70

7.2 Using Security Design Patterns

Figure 7.3: Countermeasure Modelling Domain Model - Concepts of counter-
measure modelling (Use of this model is permitted by SINTEF)

71

7. USING A COUNTERMEASURE MODEL DURING
DEVELOPMENT

72

Chapter 8

Extending Seamonster

SeaMonster (61) is an open source security modelling tool developed by students at

NTNU for SINTEF through a software development project. SeaMonster is designed

to help security experts and software developers model security through any phase

of software development. This chapter describes the current status of SeaMonster;

functionality and technical details. Possible further development is suggested. The

chapter serves as an examination of SeaMonster as a baseline for the countermeasure

modelling tool needed in the thesis.

8.1 Current Status

SeaMonster allows users to model threats, attacks and vulnerabilities in different di-

agram notations and tie the diagrams together in one security model. This security

model is used to summarise a set of diagrams aimed at describing different views of a

particular software security issue. The currently implemented modelling techniques are

attack trees, vulnerability cause graphs and misuse cases. These were described in Sec-

tion 3.2. Figure 8.1 shows a screenshot from SeaMonster. The centre frame shows the

current model, in this case a security model diagram consisting of three sub diagrams:

an AT, a VCG and a misuse case. These are connected together showing that there

is a relationship between the models, i.e. the vulnerabilities can be exploited trough

attacks, and the attacks can be performed in the misuse cases. The user interface is

73

8. EXTENDING SEAMONSTER

based on a palette of modelling components, which is different for each type of dia-

gram. Component properties such as descriptions or implementation cost can be used

to further detail the components. These properties are mainly limited to textual names

and descriptions so far.

Figure 8.1: SeaMonster Overview - Security model diagram

SeaMonster is distributed as open source and is therefore free to use and modify. It is

built using the Eclipse Graphical Modeling Framework (GMF) (19) which to a large

degree defines the system architecture. A thorough understanding of this framework

and its dependencies is needed to further develop and improve SeaMonster.

The Eclipse (21) platform is an open source development platform comprised of extensi-

ble frameworks and tools. GMF is a framework for developing Eclipse graphical editors,

and functions as a bridge between the Eclipse Modeling Framework (EMF) (20) and

Graphical Editing Framework (GEF) (18). The relations between these frameworks

are described in Figure 8.2. EMF is a modelling and code generation framework for

building applications based on a structured data model, often referred to as a domain

model. GEF is a framework that takes an existing application data model and cre-

ates a graphical editor for this model. It provides layout and rendering for displaying

74

8.1 Current Status

graphics.

GMF-developed Graphical Editor

Eclipse Modeling
Framework

Eclipse Platform

Eclipse Modeling
Framework

Eclipse Modeling
Framework

uses

uses

uses

uses
uses

uses uses

uses uses

Figure 8.2: GMF Dependencies - Eclipse frameworks relations

GMF-based development

Figure 8.3 shows an overview of the GMF development process and models used during

development. The domain model, graphical definition and tooling definition can be

developed in arbitrary order; an intuitive approach might however assume the domain

model is developed first. The domain model defines the structure of the application

data and can be modelled using a UML (31) modelling tool. The structure defines data,

their attributes and relations. The graphical definition model is central to GMF and

contains the graphical elements that are to appear in the final editor. Shapes, colours,

labels etc. can be defined here. The optional tooling definition model specifies a palette

and other periphery such as menus and toolbars. These tools are used to create diagram

components. Once the above definition models are created, a mapping model is used

to link the graphical and tooling definitions to the domain model(s). The mapping

of definitions enables reuse of components, i.e. a graphical or tooling definition may

75

8. EXTENDING SEAMONSTER

work well for several domain models. The mapping model defines what parts of the

data model are to be included as components in the diagram. Each component has a

graphical representation from the graphical definition and optionally a tool such as a

creation tool. Finally, a generator model specifies implementation details for the code

generation. This includes packaging properties, application settings and more. Once

the generator model is defined, the graphical editor can be generated. The resulting

application code is a working graphical editor for the domain model. To add a feature

not supported by the Eclipse modelling frameworks, it is possible to apply any wanted

changes to the code.

EMF Model
Description

(domain model)

GMF Tooling
Definiton

GMF Graphical
Definition

GMF Mapping
Model

Create GMF
project

Generate
Diagram Plug-in

GMF Generator
Model

Figure 8.3: GMF Overview - basic development process

SeaMonster models and GMF components

The concepts to be modelled in a GMF-based editor must be included in the domain

model. In the case of SeaMonster, any concept used in the security modelling ap-

proaches must be included in the domain model. Figure 8.4 shows a high-level class

diagram of the domain model.

The SecurityModel class represents the high-level security model which ties together

diagrams of different modelling approaches. The SecurityModel may contain one or

more sub diagrams of the types VCG, AttackTree or MisUseCase. These define the

modelling approaches available in the editor. The extentions of SubDiagram are reduced

to single classes in the figure to increase readability. To expand SeaMonster with

other modelling approaches, the domain model has to be expanded by creating a new

extension of SubDiagram. The class VCG is expanded in Figure 8.5.

76

8.1 Current Status

Figure 8.4: SeaMonster Domain Model - Class diagram of the domain model

77

8. EXTENDING SEAMONSTER

Figure 8.5: VCG Data Definition Model - Vulnerability cause graphs defined in
the domain model

78

8.1 Current Status

Refer to Section 3.2.4 for a detailed explanation of vulnerability cause graphs. The data

definition of a VCG is the most complex of the diagrams because of numerous relations

including constraints between components. VCG nodes are divided into ExitNodes and

CauseNodes. An ExitNode represents the vulnerability described by the graph, and

there is only one of them in each graph. All other nodes are a subtype of CauseNode.

The CauseNode is subtyped by three classes; SimpleNode, CompoundNode and Con-

junctionNode. The difference between the first two is the visual representation. The

ConjunctionNode differs from the other two in that it is a container component and

therefore can contain other CauseNodes. Some classes are given attributes, e.g. name,

description and CVElink. These can be used to describe diagram components or en-

able graph computations in the resulting editor. The CVElink attribute is currently not

implemented in SeaMonster, but it is designed to link modelled vulnerabilities to vul-

nerability repositories such as CVE (58). The AttackTree and MisUseCase definitions

are fairly similar to the VCG definition and are left out here.

The GMF graphical definitions define the diagram notations. There is a variety of

predefined symbols and external images can be utilised. The technical details of the

graphical, tooling and mapping definition will not be explained here because they are

rather straightforward with respect to GMF-development.

Components and deployment

SeaMonster is arranged as a set of plug-ins running on the Eclipse platform. Each

type of diagram is implemented as a plug-in to improve modularity and extendibility.

SeaMonster consists of the following plug-ins:

• seaMonster: contains the domain objects.

• seaMonster.edit: contains the domain objects.

• seaMonster.secmod: contains the security model diagram code. This plug-in also

defines the SeaMonster application startup.

• seaMonster.attackTree: contains the attack tree diagram code.

• seaMonster.vcg: contains the vulnerability cause graph diagram code.

• seaMonster.misuseCase: contains the misuse case diagram code.

79

8. EXTENDING SEAMONSTER

The implementation of SeaMonster is highly modular due to the plug-in structure. A

plug-in can be added or removed independent of other components.

8.2 Possible Further Development

The design of SeaMonster using independent plug-ins and choice of implementation

technology (Eclipse frameworks) make it highly modular. For instance, a goal of GMF

is to allow the graphical definition to be reused for several domains. This is possible

by using a separate mapping model to link the graphical and tooling definitions to a

domain model. The technical feasibility of improving and extending SeaMonster is not

an issue.

A quick study of SeaMonster is performed to identify possible improvements that will

contribute to the research in this thesis. These are described in the following para-

graphs.

Adding other modelling techniques. SeaMonster currently includes attack trees,

vulnerability cause graphs and misuse case diagrams. Adding support for other secu-

rity modelling types and security diagrams would increase the degree of completeness

with respect to security modelling. The modelling of countermeasures is not strongly

supported. Identifying countermeasures during development is central to this thesis,

implementing some countermeasure modelling technique is very relevant and feasible.

Security activity graphs are a viable option.

Tighter coupling between diagrams. A security diagram currently connects dif-

ferent security diagrams in SeaMonster. This diagram gives a high-level overview of

a security model with single nodes representing a diagram and connections describing

their relations. The relations are simple links and do not provide any functionality

except describing that there is a relationship between to diagrams. For instance, the

goal of an attack tree exploits the vulnerability of a vulnerability cause graph. Im-

provements of the links between diagrams could include navigation between diagrams

by clicking in the high-level security model.

80

8.2 Possible Further Development

Diagram decomposition. Security models can be large and complex. Implementing

a diagram decomposition mechanism would increase usability and enable security mod-

elling at different abstraction levels. This would enable (different) users to model with

a choice of granularity, e.g. security experts might provide more detailed knowledge

than developers who are not trained in software security.

Model calculations. Some modelling techniques are suited for model calculations.

The cost of performing an attack can be calculated in attack trees if each node is

described with a cost metric. Model calculations can be useful in a risk management

process, i.e. for prioritising and ordering schemes.

Preferred paths. Security modelling techniques often describe several options to

threat, attack or counter attacks. For instance, there are several ways to achieve unau-

thorised access: using a backdoor entry point, guessing or brute-forcing a password.

Highlighting parts of a security model can be used to describe preferred solutions, most

likely attack etc. This can currently be done by using appearance properties such as

node colour, but creating tools for this is better for usability.

Resolved nodes. Marking a node as ’Resolved’ is useful in tracking security issues.

This requires additional diagram tools.

Model validation. Modelling techniques have constraints on diagram components

(nodes and connections). Model validation ensures that all constraints are followed in

models created in the editor.

Use of external knowledge repositories Chapter 5 described mechanisms for

sharing security knowledge through tools. Use of external vulnerability repositories is

a possible improvement. The repositories can be used to pull information on common

vulnerabilities that are modelled in a SeaMonster diagram.

81

8. EXTENDING SEAMONSTER

Standard model format and diagram interchange Following a standard format

for diagram export could enable easier diagram interchange between SeaMonster and

other modelling tools. The UML meta-model is a possible candidate.

Decisions regarding further development are made in Chapter 9.

82

Chapter 9

Realisation

This chapter describes the realisation of the security improvement tool suggested in this

thesis. A security modelling tool for modelling of vulnerabilities and countermeasures

is defined through 22 requirements. The tool design and implementation is based on

extending SeaMonster (61).

9.1 Realisation Description

Chapter 7 described an approach based on countermeasure modelling and sharing se-

curity knowledge between security experts and software developers through security

improvement tools. A security modelling tool for modelling of software vulnerabili-

ties and countermeasures (Research Objective 1) will be implemented to be used in

combination with software design tool artefacts (Research Objective 2) as shown in

Figure 9.1. Security experts and practitioners perform countermeasure modelling in

the security modelling tool. A complete realisation would store the security models

in a security knowledge repository which could then be utilised from the software de-

sign tool. In the following realisation, the repository will be short-circuited to limit

implementation workload. The countermeasure models will not be accessible outside

the security modelling tool because of the short-circuit, this is however a small tech-

nical limitation that does not affect the contribution of the countermeasure modelling

process. Software developers use the countermeasure models to find the right security

83

9. REALISATION

Countermeasure Models

Security Experts:
Model definition

Software Developers:
Using models to find security patterns

Security Knowledge Repository

Figure 9.1: Realisation - The repository is short-circuited

84

9.2 Requirements

pattern design templates.

The security pattern design templates are developed in previous work (13), the coming

sections describe the realisation of the security modelling tool.

9.2 Requirements

Security is not yet an established niche in the commercial software modelling industry.

It is therefore unfeasible to base the requirements of a security modelling tool on pre-

vious solutions. The author has created a list of requirements which are inspired by

existing general-purpose modelling and design tools.

The following are suggested requirements for a graphical editor specialised for software

security modelling:

1. There must be a canvas that expands as the user builds models exceeding the

current modelling area.

2. There must be a tool palette from which the user can select between a predefined

set of tools and modelling components.

3. The tool palette must be configured to the type of security diagram currently

being modelled.

4. An unlimited number of predefined components can be added to the canvas.

5. There must be zoom in and zoom out functionality.

6. It must be possible to have several diagrams loaded simultaneously.

7. There must be a model selection pane to switch between the currently loaded

diagrams.

8. Textual notes can be placed anywhere on the canvas. These are independent of

the modelling components.

9. There must be a mechanism for highlighting parts of a diagram.

10. The editor must include an undo-operation that cancels the last operation.

85

9. REALISATION

11. The editor must include a cut-operation that removes the selected item(s).

12. The editor must include a copy-operation that copies the selected item(s).

13. The editor must include a clipboard and a paste-operation that pastes modelling

components currently on the clipboard.

14. The editor must support modelling of software vulnerabilities through vulnera-

bility cause graphs.

15. The editor must support modelling of vulnerability countermeasures through se-

curity activity graphs.

16. Modelling components must have the following textual properties: name and

description.

17. The editor must support model decomposition.

18. The notation used in vulnerability cause graphs must follow the one used in (15).

19. The notation used in security activity graphs must follow the one used in (7).

20. It must be possible to save diagrams to file.

21. It must be possible to open diagram from file.

22. It must be possible to generate security activity graphs automatically from pre-

defined vulnerability causes.

9.3 SeaMonster

SeaMonster will be used as a baseline for the described security modelling tool. Sea-

Monster was described and briefly evaluated for further development in Chapter 8.

The decision to use SeaMonster is based on three aspects: fulfilment of requirements,

technical feasibility of further development and potential for further development.

86

9.3 SeaMonster

Fulfilment of requirements. SeaMonster fulfils the majority of requirements de-

fined in the previous section so it is aligned with the security modelling tool described

in this thesis. Table 9.1 shows a summary of an evaluation of fulfilled requirements in

SeaMonster. Using SeaMonster as a baseline for the security modelling tool will relieve

the workload and possibly improve the contributions of the thesis.

Requirement Fulfilled Comment
1 OK The canvas can expand in all directions.
2 OK
3 OK
4 OK
5 OK
6 OK
7 OK
8 OK
9 OK Diagram components can be highlighted using a colour

palette in the appearance properties.
10 OK
11 OK
12 OK
13 OK
14 OK
15 N/A Security activity graphs are not supported.
16 OK
17 N/A No decomposition mechanism exists.
18 OK
19 N/A Security activity graphs are not supported.
20 OK
21 OK
22 N/A Security activity graphs are not supported.

Table 9.1: Requirements Fulfilled in SeaMonster

Technical feasibility. This refers to the feasibility of extending the SeaMonster im-

plementation artefacts. SeaMonster has a highly modular design with one plug-in for

every type of modelling diagram. This enables maintainability because changes in one

plug-in will usually not introduce changes to other plug-ins. GMF-development is well

documented through online tutorials and examples (19). The Eclipse platform pro-

87

9. REALISATION

vides model editors for GMF-artefacts, which should make it easier to understand the

existing SeaMonster implementation artefacts.

Potential for further development. Some possible directions for further develop-

ment were described in Section 8.2. This shows that SeaMonster has potential as a

thorough security modelling tool. Requirements 15, 17 and 19 should be implemented

as a contribution of this thesis.

9.4 Design

SeaMonster is developed using Eclipse Graphical Modeling Framework (GMF) which

was described in Chapter 8. The architecture of SeaMonster is to a large degree defined

by GMF and will remain unmodified. Some design modifications and additions are done

in the data model and composition of system modules.

Figure 9.2 shows the system modules after adding the package seaMonster.sag. The

packages seaMonster and seaMonster.edit contain the domain model, i.e. Java classes

describing the security concepts to be modelled in the diagrams. These packages are

used by the five packages defining one security diagram each. Adding security activity

graphs in SeaMonster is done by implementing the package seaMonster.sag.

The domain model is expanded to define security activity graphs (SAG). The extension

is designed to include SAGs in the security model diagram as is already done with at-

tack trees, vulnerability cause graphs and misuse cases. Figure 9.3 shows the modified

domain model of SeaMonster. The domain model is a data definition model describing

concepts and relations to be modelled in the editor. The SecurityModel class repre-

sents the high-level security model which ties together diagrams of different modelling

approaches. The SecurityModel may contain one or more sub diagrams of the types

VCG, AttackTree, MisUseCase or the added SAG. These types define the modelling

approaches available in the editor. The extensions of SubDiagram are reduced to single

classes in the figure to increase readability. The class SAG is shown in full-scale in

Figure 9.4. A SAG diagram contains one Vulnerability which has a name and a de-

scription. A vulnerability has one predecessor node, a SAGNode, as its root activity.

88

9.4 Design

seaMonster

seaMonster.edit

seaMonster.secmod

seaMonster.misuseCase

seaMonster.attackTree

seaMonster.vcg

seaMonster.sag

Figure 9.2: SeaMonster Plug-ins Extended - SeaMonster.sag implements security
activity graphs

89

9. REALISATION

The root activity can be any node allowed in a SAG; or, and, split or activity. These

nodes are represented by their respective classes in the figure.

Figure 9.3: Extended SeaMonster Domain Model - SAG is added as a type of
diagram

A SAG is a directed acyclic graph which means that no relation between modelling

components in the graph should introduce a cycle. A cycle detection algorithm is used

to detect possible cycles and should be applied each time a relation is created. The

algorithm takes two nodes as parameters and returns true if a relation between the

nodes does not introduce a cycle, and false if it does. The algorithm is the same as the

one used in the existing attack tree plug-in. Pseudo-code is given below.

cycleDetection(nodeA, nodeB){

X <- nodeB;

while X not empty:

Y <- remove first element of X

90

9.4 Design

Figure 9.4: SAG Data Definition Model - SAG defined in the domain model

91

9. REALISATION

if Y = nodeA:

return false;

add all predecessors of Y to X

return true;

}

9.5 Implementation

This section describes the modification of existing SeaMonster plug-ins and the im-

plementation of a new plug-in for security activity graphs. The details in this section

require knowledge of GMF which was introduced in Chapter 8. GMF generates Java

code from a set of GMF models. This set contains these files that need to be created

or modified:

• seaMonster.ecore. This is the EMF data definition model.

• *.gmfgraph. The GMF graphical definition model defines the graphical elements

of the editor.

• *.gmftool. The GMF tooling definition model defines the available tools.

• *.gmfmap. The GMF mapping model relates the data definition, graphical ele-

ments and tools.

• *.gmfgen. The GMF generator model defines the code generation process. Ex-

ample variables are package names and structures, copyright information and file

extensions.

9.5.1 Security Activity Graph Plug-in

The SeaMonster data definition model (seaMonster.ecore) is updated to include secu-

rity activity graphs as shown in Figure 9.3 and 9.4 in Section 9.4. It is modified using

the UML based built-in Eclipse EMF editor. The packages seaMonster and seaMon-

ster.edit were regenerated to reflect the changes in the data definition model. The

security model in SeaMonster is a diagram that connects different security diagrams in

92

9.5 Implementation

a high-level perspective. This diagram is defined in the plug-in seaMonster.secmod and

is modified to include security activity graphs. This required changes to the graphical,

tooling and mapping model. Security activity graphs are implemented in the plug-in

seaMonster.sag. The following paragraphs describe the steps involved in the implemen-

tation:

Graphical definition

The graphical definition which defines the visual appearance and properties of the dia-

gram is shown in Figure 9.5. Modelling components that are to appear in the diagram

are defined as Nodes. Connections between nodes are defined as Connections. Figure

Descriptors are created to define the visual representation of nodes and connections.

The Diagram Labels define node labels, allow modelling components to have short

names or descriptions. The nodes in the graphical definition follow the SAG syntax

described in Section 3.2.5.

Tooling definition

The tooling definition which defines the tool palette is shown in Figure 9.6. The model

defines six tools, one for the creation of each SAG element. The tool icons are set as

bundled images. These images are also used on diagram elements to follow the specified

modelling syntax.

Mapping definition

The mapping definition is shown in Figure 9.7. This model defines a mapping between

the data definition, graphical and tooling models. A Top Node Reference is created for

any modelling component that can be placed directly on the modelling canvas,e.g. the

first element in the diagram or elements not connected to any other elements. This is

created for a vulnerability, activity, and-node, or-node and split-node. Each top node

is given a Feature Label Mapping which maps the name attribute of each class specified

in the data definition to the node. The Link Mappings relate the connections from

the graphical definition to tools from the tooling definition and target nodes. One of

the link mappings is given a Link Constraint which is set to be implemented in the

generated Java code. This constraint contains the cycle detection algorithm. The code

generation framework creates a code skeleton which has to be implemented by the

developer.

93

9. REALISATION

Figure 9.5: SAG Graphical Definition Model -

94

9.5 Implementation

Figure 9.6: SAG Tooling Definition Model -

Figure 9.7: SAG Mapping Definition Model -

95

9. REALISATION

Modifications to generated code

The cycle prevention algorithm specified in Section 9.4 was implemented in SeaMon-

sterBaseItemSemanticEditPolicy.java found in the sag.diagram.edit.policies package.

The method preActivityConstraint implements the link constraint of the LinkMap-

ping(SAGNode/ActivityNodePredecessor) from the mapping definition model. This

modification is made to adhere to the SAG syntax and to enable further work with

model computations. The constructors of the classes SAGAndNodeEditPart.java, OrN-

odeEditPart.java and SplitNodeEditPart.java in the sag.diagram.edit.parts package

were modified to use a CenterStackLayout. This change puts the diagram node la-

bels to the centre of the node.

The product configuration was modified to add plug-in dependency of the new plug-in.

9.6 Testing

The testing of SeaMonster with a security activity graph plug-in is performed as an

internal quality assurance. The goal is to identify possible discrepancies between re-

quirements and implementation, to discover and being able to correct errors and flaws.

The testing is meant to document that the application is suited for a case study and

thereby assuring the value in made contributions. The tests are simple functional tests

that can be mapped to the requirements in Section 9.2. Detected errors are corrected

unless otherwise is stated. The test suite contains 13 tests and is described in Tables

9.2 through 9.14.

Table 9.2: Test 1

Test ID 1
Test name Canvas
Requirements 1, 4
Test description Expected Result Result
Build an arbitrary diagram. Extend
the diagram with a new component
that stretches outside the current can-
vas. Repeat the last step placing a
component above, under, left and right
of the initial diagram.

The canvas expands in the di-
rection specified by the user.

Approved

96

9.6 Testing

Build an arbitrary diagram with 20
components and 20 connections.

The components are placed in
the diagram without any in-
terruptions or degrade of per-
formance.

Approved

Table 9.3: Test 2

Test ID 2
Test name Palette
Requirements 2, 3
Test description Expected Result Result
Create a security activity graph dia-
gram. Use the tool palette to create
the following modelling components:
vulnerability, and-node, or-node, split-
node and activity. Draw a connection
between the vulnerability and the ac-
tivity.

The tool palette is configured
for security activity graphs
with tools for the components
described in the test descrip-
tion. The tools can be used to
create the mentioned compo-
nents and connections.

Approved

Create a vulnerability cause graph di-
agram. Select the ExitNode creation
tool from the palette and create the
node.

The tool palette switches
to vulnerability cause graph
mode. An exit node is cre-
ated.

Approved

Table 9.4: Test 3

Test ID 3
Test name Notes
Requirements 8
Test description Expected Result Result
Create a security activity graph dia-
gram with a vulnerability. Create a
note which is not connected to the vul-
nerability and give it the text ’this is a
test’. Delete the vulnerability.

A note is created with the
specified text. The note re-
mains when the vulnerability
is deleted.

Approved

97

9. REALISATION

Table 9.5: Test 4

Test ID 4
Test name Highlighting
Requirements 9
Test description Expected Result Result
Create a security activity graph dia-
gram with a vulnerability connected to
an or-node which is then connected to
two activities. Give one activity and
the or-node a background colour differ-
ent from the vulnerability.

The specified diagram is se-
lected and specified nodes are
given a background colour.

Approved

Table 9.6: Test 5

Test ID 5
Test name GUI
Requirements 5, 6, 7
Test description Expected Result Result
Create an arbitrary diagram. Zoom in
so one modelling component covers the
canvas. Zoom out until the complete
diagram fits the canvas.

Zooming functionality should
behave as specified in the test
description.

Approved

Create a vulnerability cause graph, se-
curity activity graph and an attack
tree.

The different diagrams should
be created without closing the
other diagram(s).

Approved

Continue from the above step. Switch
between the diagrams using the dia-
gram selection pane.

SeaMonster shall switch
between the diagrams and
change the user interface
accordingly.

Approved

Table 9.7: Test 6

Test ID 6
Test name Standard editor functionality

98

9.6 Testing

Requirements 10, 11, 12, 13
Test description Expected Result Result
Create an arbitrary diagram with 4
components.
Create a connection between two com-
ponents. Undo the operation from the
Edit menu.

The connection is undone. Approved

Create a connection between two com-
ponents. Select the connection and cut
it using the Edit menu.

The connection is cut from the
diagram.

Approved

Select a component and copy it using
the Edit menu. Paste the copy into the
diagram using the Edit menu

The component is copied and
pasted into the diagram.

Approved

Table 9.8: Test 7

Test ID 7
Test name Vulnerability Cause Graphs
Requirements 14, 18
Test description Expected Result Result
Create a vulnerability cause graph dia-
gram.

All components of a vulnera-
bility cause graph is available
in the palette.

Approved

Create the diagram shown in Figure
9.8.

The diagram should be cre-
ated without errors and with
matching notation.

Approved

Table 9.9: Test 8

Test ID 8
Test name Security Activity Graphs
Requirements 15, 19
Test description Expected Result Result
Create a security activity graph dia-
gram.

All components of a security
activity graph is available in
the palette.

Approved

99

9. REALISATION

Create the diagram shown in Figure
9.9.

The diagram should be cre-
ated without errors and with
matching notation.

Approved

Table 9.10: Test 9

Test ID 9
Test name Decomposition
Requirements 17
Test description Expected Result Result
Create an arbitrary diagram with at
least one modelling component. Se-
lect a component, click it with the right
mouse button and decompose it.

The component should be de-
composed by initiating a di-
alogue where a new diagram
can be instantiated. The
new diagram is connected to
the originial component and
can be accessed by double-
clicking.

Failed

Table 9.11: Test 10

Test ID 10
Test name Properties
Requirements 16
Test description Expected Result Result
Create a security activity graph dia-
gram with one component of each type
from the palette. Edit properties and
give them a name and description

The properties are be stored
with the component.

Approved

Table 9.12: Test 11

100

9.6 Testing

Test ID 11
Test name Persistence
Requirements 16
Test description Expected Result Result
Create a security activity graph dia-
gram. Save the diagram to file, close
and restart SeaMonster. Open the
saved model.

The diagram should be saved
to the specified path. The dia-
gram should look the same af-
ter SeaMonster has restarted.

Approved

Table 9.13: Test 12

Test ID 12
Test name Cycle prevention
Requirements N/A
Test description Expected Result Result
Create a security activity graph dia-
gram. Create three and-nodes and con-
nect them in a circular manner.

The third connection complet-
ing the cycle should not be al-
lowed.

Approved

Table 9.14: Test 13

Test ID 13
Test name SAG generation
Requirements 22
Test description Expected Result Result
Create a vulnerability cause graph with
a minimum of 3 causes. Highlight the
complete graph and generate a security
activity graph.

The generated SAG should be
composed following the algo-
rithm in (6).

Failed

101

9. REALISATION

Figure 9.8: Vulnerability Cause Graph Test -

Figure 9.9: Security Activity Graph Test -

102

9.6 Testing

9.6.1 Test Summary

All tests were approved except Test 9 (Decomposition) and Test 13 (SAG Generation).

Model decomposition and SAG generation is not implemented due to time constraints,

therefore requirement 17 and 22 will not be fulfilled during this thesis. This is not

viewed as a severe shortcoming of the implementation because this functionality is not

essential to the research objectives and the countermeasure modelling approach. Model

decomposition was stated as a requirement because it was intended to improve usability

and readability of security model diagrams. Automatic generation of security activity

graphs is likely a useful tool, especially for users not trained in security or the use of

SAGs. The state of the implemented security modelling tool is satisfactory in regards

to performing a case study.

103

9. REALISATION

104

Chapter 10

Case Study

This chapter contains a case study of the suggested security improvement method and

tools. The case study is performed to document and evaluate the contributions of

this thesis. A medical patient journal system is described as the case software system.

The system’s specifications are analysed through security modelling and vulnerability

countermeasures are applied in the system design.

10.1 Approach and Case Description

Research objective 3 is a case study designed to document the suggested security im-

provement approach and tools. The value of the case study is twofold; as a proof of

concept it shows how the contributions are applied and possible benefits. Second, the

case study enables an evaluation of the contributions through experiences with apply-

ing them. The case study will demonstrate how security improvement tools can be

applied in early stages of the software development lifecycle. The approach is based

on an analysis of system specifications and designs, followed by mitigation of software

vulnerabilities in the design phase.

The case study should deal with software and security risks that are relevant to the

current trends in software and security. Increasing connectivity has a large influence

on security issues. Systems connected to the Internet are vulnerable to software-based

attacks, because the growing connectivity of computers increase the number of attack

105

10. CASE STUDY

vectors and decreases the level of sophistication that is needed to perform an attack

(46). The Web is a special case of the client-server model, which introduces the concept

of a user not trusted by the system. Deploying an application on a Web server intro-

duces security risks which should be considered during design. The software described

in the case study will therefore be specified as a Web application. Security becomes

increasingly important as software handles valuable or confidential assets. The soft-

ware described in the case study should have strict requirements to confidentiality and

integrity of information.

Following the above guidelines, a system for administration of medical patient journals

is chosen for the case study. The system should be available through a Web interface.

Figure 10.1 shows a UML use case diagram of the system. The diagram describes

interactions between users and the system. The system has several types of users

which should have access to different functions and information. Medical staff is able

to write diagnoses and comments to a patient profile. Patients use the system to view

diagnoses and personal information stored in the system. The system administrator

has access to all functions.

System requirements are made to define assets and security objectives. These require-

ments are created by the author solely for this case study and are not complete for a

real medical information system. The system has the following requirements:

1. There are five actors in the system: patients, system administrator, medical staff,

doctors and nurses. Medical staff includes doctors and nurses.

2. Each patient has a medical journal which includes the following: name, age,

address, phone number, social security number, diagnoses and medical comments

from doctors and nurses.

3. A patient should be able to view the personal information specified in Require-

ment 2 and the diagnosis linked to her.

4. Medical staff should be able to view any patient journal.

5. Doctors should be able to post comments to each patient’s journal. These are

only accessible by medical staff.

106

10.1 Approach and Case Description

Patient

System Administrator

Doctor Nurse

Log on

View Diagnose

Change Diagnose

Write Comment

View Nurse Comment

View Personal
Information

View Doctor Comment

Write Comment

View User

Figure 10.1: Case Study Use Cases - Connections from the System Administrator
to the use cases are left out to increase readability

107

10. CASE STUDY

6. Nurses should be able to post comments to each patient’s journal. These are only

accessible by medical staff.

7. A system administrator should be able to view the names of all users of the

system.

8. A system administrator should have access to all system functions.

9. The system must perform access control to ensure that the specified information

are accessible only to those specified in these requirements.

10. The integrity of stored information must be ensured.

11. The system must be accessible through the Internet and a Web browser.

10.2 Analysis and Design

This section documents the case study execution and describes the produced artefacts.

The specified journal system is analysed using the approach in Chapter 7 and designed

using security pattern design templates.

Countermeasure modelling can be performed using only system specifications as input,

but is perhaps more valuable if design is included because this enables a deeper and

more specific analysis of possible threats and vulnerabilities. A high-level design and

system deployment is created before the countermeasure modelling is performed. Figure

10.2 shows a deployment diagram of the journal system. The system is deployed on

a Web server and accessed using a Web browser. The user interfaces are built using

Java servlets (56) which can generate a dynamic response with Web-content based on

a request. The servlets get their data from a data package which is responsible for

communicating with the underlying database.

Figure 10.3 shows a high-level design with the main modules of the journal system. The

Client package represents the client-side (Generated HTML pages and a Web browser).

The Container class is a Web container which is a specialised Web server that supports

servlet execution. All requests to the system are handled by this component.. The

108

10.2 Analysis and Design

Web Server

Database Server

Client Web
Browser

data

servlets

Figure 10.2: Case Deployment - The journal system is deployed on a Web server

109

10. CASE STUDY

Figure 10.3: High-Level Design I - Module structure

servlets package holds the business logic of the application and communicates with the

data package which provides persistence.

Figure 10.4 shows a design of the data package. This model does not support access

rights, and would leave access control to the implementations of higher application

layers.

Figure 10.4: High-Level Design II - Data layer

The medical journal system is specified to deal with a large number of users and informa-

110

10.2 Analysis and Design

tion resources. So far the design is made without much effort in security. Implementing

and deploying this design is likely to produce a very insecure software system.

10.2.1 Countermeasure Modelling

Proper countermeasure modelling requires security knowledge and experiences with

security risks, attack patterns and common vulnerabilities and should therefore be per-

formed by security experts and professionals. The system specifications and design

are analysed, potential vulnerabilities and countermeasures are modelled using the ex-

tended SeaMonster. The modelling performed in this case study includes only technical

vulnerabilities and causes because the scope of countermeasures is limited to those ap-

plicable during software design. Human factors are a big part of security risks (70)

and should be considered in a real-world scenario. Figure 10.5 shows a screenshot from

SeaMonster where a security activity graph diagram is created.

Figure 10.5: Extended SeaMonster Screenshot - Security Activity Graph Diagram

Medical records are highly sensitive data with strict privacy requirements. The dis-

closure of this information is a severe threat and should be counter measured during

design. The system specifications are analysed using knowledge on information disclo-

111

10. CASE STUDY

sure issues and a vulnerability cause graph (VCG) is created as shown in Figure 10.6.

Figure 10.6: Case VCG I - Vulnerability: Information disclosure

These causes of possible information disclosure issues in the journal system are identi-

fied:

• Insecure communications. Requirements state that the information handled in

the system is highly sensitive and its privacy must be ensured. Failure to encrypt

communications means that an attacker who can sniff traffic from the network

will be able to access the communication payloads.

• Insecure storage. The healthcare records and personal information of system users

must be stored in a secure manner. The high-level designs do not specify any use

of cryptographic storage. Preventing cryptographic flaws takes careful planning

and must be included in design.

• Data model is not scalable. The system requirements state that the system must

handle a large number of users mapped to different acting roles with levels of

access rights. This is modeled as a conjunction of two causes in Figure 10.6. The

data layer design defines access rights per user, which is highly redundant and

error prone. Managing the rights per user account may not be feasible.

• Lack of access policy and control. A system of this size should have a centralised

mechanism which defines access policies and performs access control.

112

10.2 Analysis and Design

A countermeasure model is now created for the information disclosure vulnerability. To

create a security activity graph (SAG) from the VCG, recall from Section 3.2.5 that

the first step is to enumerate mitigation techniques for each cause. The techniques are

expressed as logic combinations of concrete actions:

Insecure communications:

Vulnerability scanning tools can verify that SSL is used on the front end. Scanning tools

may not have access to check backend connections between infrastructure elements such

as between Web server and database server. The use of code review is efficient to verify

encryption on backend communications.

Graph fragment: (Vulnerability scanning tools AND Use SSL) AND (Encrypt commu-

nications between infrastructure elements AND Code review)

Insecure storage:

Sensitive data must be persisted using cryptographic storage. Failing to encrypt sen-

sitive data or using poorly designed cryptography can lead to information disclosure.

Verifying use of cryptographic storage should be done by a code review because scan-

ning tools can only detect use of cryptographic APIs, not verify that they are being

used properly.

Graph fragment: Code review AND Safe use of cryptography for storage of sensitive

information

Data model is not scalable:

Assigning rights to roles based on job functions is a way of supporting the least priv-

ilege principle (67). Creating the role abstraction removes the access rights definition

redundancy in the data model and ensures that users have the specified rights only.

Graph fragment: Role rights definition

Lack of access policy and control:

Role-Based Access Control (RBAC) (71) is a security pattern that defines how access

rights are mapped to users via roles in an environment with a large number of users,

information sources and resources. The roles should be reflected in the data layer design

to enable a centralised access control mechanism. Any use of information resources

through the system should be verified by performing access control according to the

113

10. CASE STUDY

roles.

Graph fragment: RBAC AND Centralised access control

Step 2 of the SAG generation process is to create graph fragments for each set of

mitigation techniques. This is straightforward when the sets are expressed in predicate

logic as done above. Finally, the fragments are combined to create the final graph. This

can be seen in Figure 10.7. Some post-generation simplification could result in a simpler

graph, e.g. reducing the number of AND-nodes, but the original graph preserves the

relationships between the activities. An example is the use of code review to check

the use of encryption of communications between infrastructure components. These

activities are highly connected.

Figure 10.7: Case SAG I - Vulnerability: Information disclosure

The assets of the journal system are healthcare records and personally identifiably

information. The integrity and confidentiality of this data must be ensured, as specified

by requirements. Tampering or disclosure of this information is a severe threat and

should be counter measured during design. Injection flaws enable attackers to create,

read, update, or delete data. The system specifications are analysed using knowledge

on injection flaws and a VCG is created as shown in Figure 10.8.

These causes of possible injection flaws in the journal system are identified:

• Unrestricted privileges. If user privileges are unrestricted, performing an injection

attack will enable attackers to perform a wide range of operations they are not

114

10.2 Analysis and Design

Figure 10.8: Case VCG II - Vulnerability: Injection flaws

meant to. Examples are file access, invoking sub-systems or system calls.

• Accepts malicious input. If the system accepts and trusts user-supplied data

as safe, attackers may inject commands to compromise the system and integrity

of stored information. Mitigating this is extremely important because there are

many entry points to the software through user-supplied input. This cause has

three underlying causes. Weak input restrictions enable attackers to supply input

that is out of valid range or of different data types. Lack of input validation

means the software accepts user-supplied data without verifying that it is safe.

Blacklist validation is a flawed validation technique that specifies and removes a

set of invalid character strings. It is not sufficient because it is difficult to cover

all possible malicious inputs.

• Output encoding. Unspecified or lacking output encoding enables command in-

jections to be run in browsers.

• Use of unsafe APIs and Detailed error messages. The use of unsafe Application

Programming Interfaces (API) in combination with giving too detailed error mes-

sages allows attackers to exploit known weaknesses in the system. Error messages

that reveal details of the system structure and technologies help attackers design

their attacks. Examples of use of unsafe APIs are unsafe character escaping func-

tions of database APIs.

115

10. CASE STUDY

A countermeasure model is now created for the injection flaw vulnerability. Mitigation

techniques for each cause are enumerated:

Unrestricted privileges:

Two security patterns are used to restrict privileges; rights are defined using roles and

RBAC is used to implement the access control. This should keep attackers from being

able to perform system functions or access resources.

Graph fragment: Role rights definition AND RBAC

Accepts malicious input:

The security design pattern Intercepting Validator (78) is used to validate input. This

pattern defines a centralised and simple yet flexible solution to validate all data passed in

from the client. System designers should carefully define valid input ranges; data types,

bounds and formats, to be able to reject and accept user-supplied input. Whitelist val-

idation is a validation technique where input is filtered according to a set of rules that

define /textitvalid input. The alternative to whitelist validation is blacklist.

Graph fragment: Intercepting Validator AND Define input ranges AND Whitelist val-

idation

Output encoding:

Specifying and ensuring strong output encoding should be done to prevent a successful

script injection from running in the client browser. This activity is named output

encoding for brevity.

Graph fragment: Output encoding

Use of unsafe APIs and Detailed error messages:

Code review or static code analysis should be performed to detect use of unsafe APIs.

Any instances of unsafe code should be replaced with safe APIs.

Graph fragment: (Code review OR Static code analysis) AND Use of safe APIs

Step 2 of the SAG generation process is to create graph fragments for each set of

mitigation techniques. This is straightforward when the sets are expressed in predicate

logic as done above. The resulting graph can be seen in Figure 10.9. Some post-

generation simplification could result in a simpler graph, e.g. reducing the number of

AND-nodes, but the original graph preserves the relationships between the activities

better.

116

10.2 Analysis and Design

Figure 10.9: Case SAG II - Vulnerability: Injection flaws

The two security activity graphs point to a set of activities which in a real-world

application should be implemented to mitigate security risk. Two activities will be

followed in this case study: RBAC from the Information Disclosure vulnerability and

Intercepting Validator from the Injection flaws vulnerability. The described patient

journal system is likely to have more possible vulnerabilities; to limit scope these will

not be explored. The next step of the development process is to incorporate the two

security improvement activities in the system design.

10.2.2 Design with Countermeasures

The software system has been analysed through vulnerability cause graphs and secu-

rity activity graphs in the countermeasure modelling phase. The security expert has

identified countermeasures that should be introduced already in the software design

phase. This work limits its scope of countermeasures to security design patterns, so

the case study will describe the use of two patterns as shown in Figure 10.7 and 10.9.

The activities (patterns) Intercepting Validator and RBAC are highlighted with colour.

A software developer will now use the security activity graphs to guide his selection

of countermeasures. In a real development case the selection could be performed by

117

10. CASE STUDY

the security expert highlighting a preferred path of the security activity graphs. Only

two activities are highlighted here because of limited scope. The countermeasures are

implemented in software design by the developer through security pattern templates in

the software design tool Enterprise Architect (82). These are the templates developed

in previous work (13). The applied security patterns in the case study are Intercepting

Validator and Role-Based Access Control (RBAC).

Intercepting Validator

This pattern describes how to scan or validate data which is passed in from the client.

Client requests may contain malicious content, especially in open environments like the

Web where a client can not always be trusted. The pattern is described in (78), the

following representation is restructured to fit the pattern representation adopted in this

work:

Name

Intercepting Validator

Example

Online bookstores are very interactive and requires a lot of input from

clients. This results in requests with parameters possibly containing mali-

cious content. The sources and types of input are diverse, and there is a

need to ensure that all requests are validated properly before it is processed

in the business logic.

Context

Any environment where the system accepts data passed in from a client

who can not be guaranteed safe or trustworthy.

Problem

You need a simple and flexible mechanism to scan and validate data passed

in from the client for malicious code or malformed content. The data could

be form-based, queries or even XML content. Several well-known attack

strategies involve compromising the system by sending requests containing

invalid data or malicious code. Such attacks include injection of malicious

scripts, SQL statements, XML content, and invalid data using a form field

118

10.2 Analysis and Design

that the attacker knows will be inserted into the application to cause a

potential failure or denial of service. The embedded SQL commands can go

further, allowing the attacker to wreak havoc in the underlying database.

These types of attacks require the application to intercept and scrub the

data prior to its use.

The solution to this problem must balance the following forces:

• You want to validate a wide variety of data.

• You want a common mechanism for validating various types of data.

• You want to dynamically add validation logic as necessary to keep your

application secure against newly discovered attacks.

• Validation rules must be decoupled from presentation logic.

Solution

Use an Intercepting Validator to cleanse and validate data prior to its use

within the application, using dynamically loadable validation logic. The

intercepting validator controls a chain of validators which validate the input

in turn. The validators should be applied declaratively based on URL,

allowing different requests to be mapped to different validator chains. The

validation logic in each validator determines whether or not the request

should continue or be aborted. Validation must always be performed on the

server-side.

Structure

A class diagram for Intercepting Validator is shown in Figure 10.10. The

Client class represents the client who sends requests to a target within the

system. In Web applications, this is usually a Web browser. All requests are

handled by SecureBaseAction. This class is used by the client to generically

enforce request validation. Invoking this component should be secure, i.e.

no processing of request parameters should be done. A request is relayed

from SecureBaseAction to this class which is responsible for configuring

chains of validators and running the requests through these chains. Valida-

tor is a generic representation of an input validator holding validation logic.

An instance of the Intercepting Validator pattern implements one or more

119

10. CASE STUDY

validators, one for each type of input that needs special validation logic.

Target represents the client requested resource. This can be any resource

within the system.

Figure 10.10: Intercepting Validator Class Diagram - Pattern structure

Dynamics

A sequence diagram is shown in Figure 10.11. The sequence follows these

steps:

1. Client makes a request to a particular resource specified as the Target.

2. SecureBaseAcition uses the InterceptingValidator to validate the data

for the target service request.

3. InterceptingValidator retrieves the appropriate validators according to

the configuration for the target.

4. InterceptingValidator invokes a series of validators as configured.

5. Each validator validates the request data. If validation fails, the se-

quence aborts and the request never reaches the target.

6. Upon successful validation, the SecureBaseAction invokes the target

resource.

Implementation

Implementations of the pattern will have different instances of the Validator

class depending on the input and its targets. Different validators are used

120

10.2 Analysis and Design

Client SecureBaseAction InterceptingValidator Target

3: request

3.1: validate

Validator 2

1: create

Validator 1

2: create

3.2: invoke

3.1.1: validate

3.1.2: validate

Figure 10.11: Intercepting Validator Sequence Diagram - Interaction sequence

to validate different data types and validators may be coupled with differ-

ent components in the system. For example, data that will become part

of an SQL statement should be validated to ensure that embedded SQL

commands cannot be entered.

Example Resolved

All requests are mapped to proper validators, and input validation is han-

dled in a centralized and uniform manner.

Consequences

The following benefits may be expected from applying this pattern:

• Malicious code and injection attacks are identified before the business

logic processes the request.

• Centralizes security validations, giving more maintainable and reusable

code.

• Decouples validations from presentation logic, giving better software

manageability and reduces redundancy.

121

10. CASE STUDY

• Simplifies addition of new validators. As new data-based attacks are

discovered, new validators can be implemented and installed without

requiring redeployment of the application.

Potential disadvantages from applying this pattern:

• Increased processing overhead.

Role-Based Access Control

This pattern describes how to assign rights in a system with a large number of users,

information types or resources, and access rights, based on roles, job functions or tasks.

The complete pattern description can be found in (71). The following description is

limited to the most essential parts:

Name

Role-Based Access Control

Example

A hospital has many patients, doctors, nurses and other personnel. The

specific individuals also change frequently. Defining individual access rights

has become a time-consuming activity and is error-prone.

Context

Any environment in which we need to control access to computing resources

where there is a large number of users, information types, or a large variety

of resources.

Problem

For convenient administration of authorization rights we need to have ways

to factor out rights. Otherwise, the number of individual rights is just too

large, and granting rights to individual users would require storing many

authorization rules, and it would be hard for administrators to keep track

of the rules. How do we assign rights based on the functions of tasks of

people?

The solution to this problem must balance the following forces:

122

10.2 Analysis and Design

• In most organizations people can be classified according to their func-

tions or tasks.

• Common tasks require similar sets of rights.

• We want to help the organization to define precise access rights for its

members according to a need-to-know policy.

Solution

Most organizations have a variety of job functions that require different skills

and responsibilities. For security reasons, users should get rights based on

their job functions or their assigned tasks. This corresponds to the applica-

tion of the need-to-know principle, a fundamental security policy (79). Job

functions can be interpreted as roles that people play in performing their

duties. In particular, Web-based systems have a variety of users: company

employees, customers, partners, search engines and so on.

Structure

A class diagram for Role-Based Access Control is shown in Figure 10.12.

The User and Role classes describe the registered users and the predefined

roles respectively. Users are assigned to roles which are given rights accord-

ing to their functions. The association class Right defines the access types

that a user within a role is authorized to apply to the protection object.

Figure 10.12: Role-Based Access Control Class Diagram - Pattern Structure

Implementation

Roles may correspond to job titles, for example manager or secretary. A

finer approach is to make them correspond to tasks - for example, a professor

123

10. CASE STUDY

has the roles of thesis advisor, teacher, committee member, researcher, and

so on.

Example Resolved

The hospital now assigns rights to the roles of doctors, nurses and so on.

The number of authorization rules has decreased dramatically as a result.

Known Uses

Some type of role-based access control is implemented in a variety of com-

mercial systems, including Sun’s J2EE, Microsoft Windows 2000 and several

database systems.

Consequences

The following benefits may be expected from applying this pattern:

• The complexity of security is reduced because there are much more

users than roles.

• Organization policies about job functions can be reflected directly in

the definition of roles and the assignment of users to roles.

• It is very simple to accommodate users arriving, leaving or being reas-

signed. All these actions require only manipulation of the associations

between users and roles.

• Groups of users can be used as role members, further reducing the

number of authorization rules and role assignments.

Potential disadvantages from applying this pattern:

• The pattern may add conceptual complexity with the new concepts of

roles and assignments.

A pattern presents a generic solution and has to be adapted through an instantiation

process. This means mapping and integrating design elements from the pattern onto el-

ements of the application design. Figure 10.13 shows the pattern instantiation dialogue

in Enterprise Architect.

124

10.2 Analysis and Design

Figure 10.13: Pattern Instantiation in Enterprise Architect - Instantiation dia-
logue

The patterns are instantiated and merged with the existing design modules described

in Section 10.2. Figure 10.14 shows the high-level design from Figure 10.3 with the In-

tercepting Validator pattern. Requests from the client-side were passed directly to the

servlets through a Web container in the original design. These requests contain parame-

ters which impose severe security risks. The parameters may include malicious content

such as program code, and need to be validated before passed to the servlets. Any

request from the client is now intercepted by the FilterChain class, and all parameters

are validated by one or two validators based on the request address. ParamValidator

is a general validator for all request parameters. SQLValidator validates requests that

will be used in components that connect to an SQL database.

Figure 10.15 shows the high-level data layer design from Figure 10.4 with the RBAC

pattern. Users are now members of roles which give access to data. The Journal, Di-

agnose, DoctorComment and NurseComment classes are instances of ProtectionObject

from the pattern structure, which means access to these resources are controlled by the

pattern. The Role class implements the Role and Right classes which define the access

a user within a role is allowed to apply to a protected object. User access rights to

system resources are now defined in a uniform manner, improving the maintainability

of rights and asserting that resources are protected by the given security policy.

125

10. CASE STUDY

Figure 10.14: High-Level Design with Security Pattern - Intercepting Validator
is instantiated

Figure 10.15: Data Layer Design with Security Pattern - RBAC is instantiated

126

10.2 Analysis and Design

The resulting design implements countermeasures by instantiating security patterns

and making small adjustments to existing design elements. The countermeasures were

identified through the countermeasure modelling process.

127

10. CASE STUDY

128

Part IV

Evaluation and Conclusion

129

Chapter 11

Evaluation and Discussion

This chapter evaluates the results, contributions and the research method. The com-

pletion of each research objective is evaluated and flaws or shortcomings of the research

method are discussed. Other research initiatives are described and related to this thesis.

11.1 Contributions

This section discusses the significance of the contributions and possible flaws or short-

comings in the results. The discussion is broken down to each research objective. The

objectives are restated below for convenience.

RO1 Develop a security modelling tool that enables software se-
curity experts and practitioners to create models of software
security vulnerabilities and countermeasures.

RO2 Develop software design tool artefacts that provide reusable
security expert knowledge in a format that is applicable at
development time. This tool should apply the output of
the tool described in RO1 to guide design of vulnerability
countermeasures in software.

RO3 Document the tools as a proof of concept and evaluate con-
tributions by performing a case study of the tools in objec-
tives 1-2.

131

11. EVALUATION AND DISCUSSION

11.1.1 Extension of SeaMonster

The extension of SeaMonster takes it one step closer to being a complete security mod-

elling tool that can be utilised by the software development industry. There are still

several possibilities for improvement in SeaMonster when it comes to general usability

and functionality. Examples are model decomposition, better support for highlighting

of diagram elements, diagram interchange between other modelling and software devel-

opment tools. The testing and case study has shown that SeaMonster is a functional

security modelling tool for modelling of attacks, threats, vulnerabilities and finally

countermeasures through security activity graphs. The preliminary study supports

that this is a tangible contribution to secure software development. This completes

Research Objective 1.

11.1.2 Security Pattern Design Templates

The security pattern design templates described in Section 4.1.1 and applied in the case

study were developed and evaluated in (13). To summarise, there are some limitations

to these:

• Only two security patterns are currently implemented as templates.

• The template format is short on descriptions which may decrease their usability.

They should preserve the typical pattern representation to avoid losing informa-

tion.

• The templates support only one software design tool (Enterprise Architect).

The lack of security improvement tools for software development was identified in the

preliminary study. The security pattern design templates are a tangible contribution

to software design tools as a concept, and it is believed that they will contribute to

increased utilisation of security expert knowledge. This is a step towards bridging the

gap; to include software developers in secure development. These templates complete

Research Objective 2.

132

11.2 Research Method

11.1.3 Case Study and Related Process

The case study was included to test the contributions and document them as a proof of

concept. The case describes the implementation of two security improvement activities;

two security pattern design templates. This could favourably be increased to create a

more complete and realistic case. The analysis and design of the patient journal software

system could be more thorough to resemble a complete software design cycle. This was

however not possible in the restricted time. The research method is discussed in Section

11.2, this also includes some thoughts on the case study design. The author was able

to test the tools more thoroughly through the case study and as such it was useful for

evaluation purposes. The significance of this contribution lies in the possible increased

security awareness among software developers who apply security improvement tools.

It puts the spotlight on software security and involves the developers by utilising key

security personnel and expert knowledge where it is needed; in the software development

process.

The case study applied the approach and definitions described in Chapter 7. The coun-

termeasure domain model defines software security concepts that are highly relevant to

software developers. This model allows developers to discuss security concepts in an

unambiguous manner, hopefully to increase security awareness. Including countermea-

sure modelling early in the software development lifecycle is a contribution to change

the old ’penetrate and patch’ ad-hoc security process. It is believed that the described

approach with tools can help identify and mitigate possible security vulnerabilities be-

fore they are realised in software products. Although the case study functions as a

proof of concept and test of contributions, it is not sufficient to state the effects and

significance of these contributions. Research Objective 3 is completed but there is a

need for more validation.

11.2 Research Method

This section discusses the chosen research method and the corresponding validity of

the performed research. This is done in order to assess the work quality and better

understand the results.

133

11. EVALUATION AND DISCUSSION

The evaluation phase of the thesis consists of a case study followed by a discussion, both

performed by the author. This is a very subjective evaluation approach where there is a

possible bias towards accepting the results and the hypothesis. A possible improvement

would be to perform a case study with experiments using randomly selected software

development practitioners. The experiments could include usability tests and case

studies with the implemented approach and tools. This kind of study was not included

in the research design because it is out of scope for one person with the available time.

The software system in the case study was limited for the same reason. A more thorough

study could include a more complete software development lifecycle to see the effects

of introducing security in design through the described contributions. Performing a

complete design, implementation and security testing of the patient journal system

could be used for research and results validation.

The lack of validation makes it difficult to state the implications of the contributions

in this thesis. The implemented approach and tools are based on trends and needs

within secure software development identified in the preliminary study. The results are

pointed out by mere observations from the author. Improvements to this work could

be done in further work through a thorough validation.

11.3 Other Initiatives

Jürjens (39) presents methods and tools for model-based security engineering with

UML. This method provides tool support for analysis of UML models against security

requirements A verification framework uses security analysis on models of the secu-

rity extension of UML, UMLsec (38). The aim of this work is to contribute towards

usage of UML for secure systems development in practice. Examples show that this

approach is able to find and correct several serious design flaws. This approach re-

quires the use of and tool support for UMLsec as modelling language. The security

modelling approaches in this thesis have no prerequisites or require prior knowledge of

modelling techniques such as UML. An automated verification framework relies on the

underlying analysis routines to provide and apply the security knowledge. The threats

to software are constantly changing, and mitigating security risk requires an evolving

134

11.3 Other Initiatives

set of countermeasures. The scheme presented by Jürjens is more static than the ap-

proach in this thesis where the security knowledge lies with the security expert applying

the approach. This approach and tools provide a way to translate the knowledge of

a security expert into a format that is usable during software development. This way

the security knowledge is not subject to being outdated. Using security modelling to

identify security issues does not introduce a complex process or the need of analysis

engines. A verification framework is a more complex technical solution.

Byers and Shahmeri (6) describe an approach to prevent vulnerabilities from being

introduced during software development, which resembles the work of thesis. Their ap-

proach is based on formal modelling of vulnerability causes through VCGs. Developers

can select a set of activities that will prevent the vulnerabilities. The activities are

modelled using SAGs. This approach is independent of software development process

and its strength lies in flexibility and support for evolution. A modelling tool named

GOAT (57) has been developed to support this process. This tool can not be considered

a complete security modelling tool because it is designed to support the process defined

by Byers and Shahmeri (6) and therefore limited to VCGs and SAGs. SeaMonster cov-

ers a wider range of security modelling techniques although the approach in this thesis

only applies VCGs and SAGs. This makes SeaMonster useful to a wider range of users

and software security applications. According to the developers of GOAT, its usability

is not satisfactory (57). It lacks an undo/redo operation and removed graph elements

are not deleted from the underlying database directly which means a database adminis-

tration tool is needed. Testing shows that the user interface is difficult for inexperienced

users and sometimes cumbersome; e.g. creation of a new vulnerability requires a se-

quence of dialogue boxes. GOAT uses a client-server architecture which means it is

more complex than SeaMonster. This architecture does however give possibilities for

sharing of information. Information on vulnerabilities is stored in the database and can

be shared across several GOAT clients. GOAT must be run with a server and a client;

this is a disadvantage to users that want to model locally on a single computer because

it adds complexity to the use cases. SeaMonster runs on a single desktop computer

without any setup or configuration process. The approach in this thesis includes a cen-

tral storing mechanism as described in Section 9.1, this was however not implemented

135

11. EVALUATION AND DISCUSSION

due to time restrictions. With further development, SeaMonster should utilise some

security information repository to access and share security modelling data.

There are many approaches to software security, one of the bigger issues today how-

ever is that they are not applied and understood by software developers. This thesis

arranges software security practice to be used by developers through security improve-

ment tools. The intention is that tool support will increase security awareness and

introducing security in software design tools will bridge the gap between developers

and security experts. Software security practices are usually based on experience and

best practices (34; 43; 45). The approach in this thesis relies on best practices to miti-

gate vulnerabilities, but it does not limit the set of best practices that can be applied.

By analysing the causes of vulnerabilities, we can identify and apply any countermea-

sure without being limited to a predefined set of security practices. This approach

does however rely on the best practices and thorough security knowledge is essential to

perform sound vulnerability and countermeasure analysis.

136

Chapter 12

Conclusion

This chapter concludes the thesis by relating the results and contributions to the hy-

pothesis. Possible further work is summarised.

12.1 Conclusion

A method to apply security knowledge during development has been defined. This

method utilises two security improvement tools during software analysis and design; a

security modelling tool and security pattern design templates. The overall goal of this

thesis was to contribute to development of more secure software by improving three

characteristics of current software development:

• Mitigation of vulnerabilities during design. The case study showed how

vulnerabilities could be avoided during design by utilising the defined method

and implemented tools to identify and apply best practice countermeasures. The

contributions of this thesis help to identify countermeasures effectively and enable

developers to apply them.

• Increasing the software security awareness among developers. The im-

plemented security improvement tools increase the availability of security expert

knowledge and therefore we believe they will contribute to increased security

137

12. CONCLUSION

awareness. This is not measured during the thesis and validation is needed to

quantify the contribution to this characteristic.

• Bridging the software security knowledge gap between security experts

and developers. The approach of tool supported use of a countermeasure model

during development is a way to share security expert knowledge between security

experts and software developers. The security experts have an approach based on

security modelling of vulnerabilities and countermeasures, which produces secu-

rity information in a format that can be utilised by developers; security activity

graphs and security pattern templates. This enables tighter coupling between

software security expertise and software development practice. Hopefully this

will help to bridge the knowledge gap, however validation is needed to quantify

the contribution to this characteristic.

The hypothesis can not be accepted or rejected based on the results of this thesis.

There is a need for validation of results to quantify the effects of the defined modelling

approach and implemented tools. There are however strong indications that favour

acceptance.

12.2 Further Work

There is clearly a need for further work in security improvement tools and methods

for software analysis and design. It is possible to improve and further develop the

contributions of this thesis. Below is a list of ideas for further work:

• Validation of results. Some empirical validation should be performed to be able

to validate results and accept or reject the hypothesis. The possible increase

in security awareness and contribution to development of more secure software

should be quantified.

• Extending functionality of SeaMonster diagrams. Diagram decomposition and

improved connections between diagrams. This is to improve usability and increase

the general modelling capabilities.

138

12.2 Further Work

• Automatic composition. SeaMonster could implement algorithms to generate a

SAG from a VCG automatically. This may benefit those who are not trained in

security and will remove redundant modelling work. Generation of other diagram

types could also be explored.

• Model validation. Study model checking and validation to determine if this is an

efficient way of re-using expert security knowledge.

• Design tool artefacts. Study what other possibilities exist for design tool security

artefacts except pattern templates.

• Security knowledge repository. Ideally, the security pattern templates and secu-

rity models should be accessible from the design tool and SeaMonster respectively

through a repository as described in Section 7.1.

139

12. CONCLUSION

140

Part V

Appendix

141

References

[1] M. Abadi and R.M. Needham. Prudent engineering practice for cryptographic

protocols. IEEE Trans. Software Engineering, 22(1):2–15, 1995.

[2] Packet Storm Advisories. http://packetstormsecurity.org/ - accessed 10.03.2008.

[3] C. Alberts and A. Dorofee. Managing Information Security Risk: The OCTAVE

Approach. Addison Wesley, 2005.

[4] I. Alexander. Misuse cases: Use cases with hostile intent. IEEE Software, 20(1):58–

66, Jan-Feb 2003.

[5] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. John Wiley and Sons, 2001.

[6] S. Ardi, D. Byers, C. Duma, and N. Shahmehri. A cause-based approach to

preventing software vulnerabilities. (submitted), 2008.

[7] S. Ardi, D. Byers, and N. Shahmehri. Towards a structured unified process for

software security. Proceedings of the 2006 international workshop on Software

engineering for secure systems, 2006.

[8] S. Ardi, P.H. Meland, I.A. Tøndel, and N. Shahmehri. How can the developer

benefit from security modeling? Availability, Reliability and Security, ARES,

2007.

[9] B. Arkin, S. Stender, and G. McGraw. Software penetration testing. Security &

Privacy, IEEE, 3(1):84–87, Jan-Feb 2005.

143

REFERENCES

[10] Computer Associates. Vulnerability information center.

http://www3.ca.com/securityadvisor/vulninfo/ - accessed 10.03.2008.

[11] S. Barnum and G. McGraw. Knowledge for software security. Security & Privacy,

IEEE, 3(2):74–78, March-April 2005.

[12] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

[13] O. G. Borstad. Instantiation of security patterns during development. Depth Study,

TDT4560 Safety and Security in IT Systems, Norwegian University of Science and

Technology (NTNU), 2007.

[14] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad. Pattern-Oriented

Software Architecture - A System of Patterns. John Wiley & Sons, 1996.

[15] D. Byers, S. Ardi, N. Shahmehri, and C. Duma. Modeling software vulnerabilities

with vulnerability cause graphs. In Proceedings of the International Conference

on Software Maintenance, Philadelphia, PA, USA, 2006.

[16] CERIAS. Coop vdb - the public vulnerability database.

https://cirdb.cerias.purdue.edu/coopvdb/public/ - accessed 10.04.2008.

[17] B. Chess and G. McGraw. Static analysis for security. Security & Privacy, IEEE,

2(6):76–79, Nov-Dec 2004.

[18] Eclipse Community. Eclipse graphical editing framework.

http://www.eclipse.org/gef/ - accessed 20.04.2008.

[19] Eclipse Community. Eclipse graphical modeling framework.

http://www.eclipse.org/modeling/gmf/ - accessed 20.04.2008.

[20] Eclipse Community. Eclipse modeling framework.

http://www.eclipse.org/modeling/emf/ - accessed 20.04.2008.

[21] Eclipse Community. Eclipse web site. http://www.eclipse.org/ - accessed

20.02.2008.

[22] D.Verdon and G. McGraw. Risk analysis in software design. Security & Privacy,

IEEE, 2(4):89–84, July-Aug 2004.

144

REFERENCES

[23] Jacobson et al. Object-oriented software engineering: a use case driven approach.

Addison-Wesley, 1992.

[24] D. Evans and D. Larochelle. Improving security using extensible lightweight static

analysis. Software, IEEE, 19(1):42–51, Jan-Feb 2002.

[25] M. Fagan. Design and code inspections to reduce errors in program development.

IBM Systems Journal, 15(3), 1976.

[26] OWASP Foundation. Owasp top 10 - the ten most critical web application secu-

rity vulnerabilities. http://www.owasp.org/images/e/e8/OWASP Top 10 2007.pdf

- accessed 23.01.2008, 2007.

[27] D. Geer. Just how secure are security products? Computer, 37(6):14–16, Jun

2004.

[28] D. Geer. Risk management is where the money is. The Digital Commerce Society

of Boston, Nov 1998.

[29] D.P. Gilliam, T.L. Wolfe, J.S. Sherif, and M. Bishop. Software security checklist

for the software life cycle. Enabling Technologies: Infrastructure for Collaborative

Enterprises. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops

on, pages 243–248, June 2003.

[30] M. Graff and K. van Wyk. Secure Coding: Principles and Practices. O’Reilly and

Associates, 2003.

[31] Object Management Group. Unified modeling language. http://www.uml.org -

accessed 20.02.2008.

[32] L. Hatton. Reexamining the fault density - component size connection. IEEE

Software magazine, March/April, 2, 1997.

[33] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-

Wesley, 2004.

[34] M. Howard. Building more secure software with improved development processes.

Security & Privacy, IEEE, 2(6):63–65, Nov-Dec 2004.

145

REFERENCES

[35] M. Howard and D. LeBLanc. Writing Secure Code. Microsoft Press, 2003.

[36] IEEE. Standard for software reviews. http://ieeexplore.ieee.org/servlet/

opac?punumber=5362 - accessed 10.04.2008.

[37] A. Jaquith. The security of applications: Not all are created equal. Research

report, @stake, 2002.

[38] Jan Jürjens. Umlsec: Extending uml for secure systems development. UML 2002

- The Unified Modeling Language, 2460 of LNCS:412–425, 2002.

[39] Jan Jürjens. Sound methods and effective tools for model-based security engi-

neering with uml. ICSE ’05: Proceedings of the 27th international conference on

Software engineering, pages 322–331, 2005.

[40] D.M. Kienzle and M.C. Elder. Final technical report: Security patterns for web

application development. DARPA, Washington DC, 2002.

[41] D.M. Kienzle, M.C. Elderm, D. Tyree, and J. Edwards-Hewitt. Security patterns

repository version 1.0. DARPA, Washington DC, 2002.

[42] B.W. Lampson. Computer security in the real world. Computer, 37(6):37–46, June

2004.

[43] S. B. Lipner. The trustworthy computing security development lifecycle. Proceed-

ings of the 20th Annual Computer Security Applications Conference, Tucson, AZ,

USA, pages 2–13, 2004.

[44] J. McDermott and C. Fox. Using abuse case models for security requirements

analysis. In ACSAC Š99: Proceedings of the 15th Annual Computer Security Ap-

plications Conference, Washington, DC, USA, IEEE Computer Society, page 55,

1999.

[45] G. McGraw. Software security. IEEE Security & Privacy 2, 2004.

[46] G. McGraw. Software Security: Building Security In. Addison-Wesley, 2006.

[47] G. McGraw. Software assurance for security. Computer, 32(4):103–105, Apr 1999.

146

REFERENCES

[48] G. McGraw. From the ground up: the dimacs software security workshop. IEEE

Security & Privacy, 1(2):59–66, Mar-Apr 2003.

[49] G. McGraw. From the ground up: The dimacs software security workshop. Security

& Privacy, IEEE, 1(2):59–66, Mar-Apr 2003.

[50] G. McGraw and E.Felten. Securing Java: Getting Down to Business with Mobile

Code. John Wiley & Sons, 1999.

[51] N. Mead. Requirements engineering for survivable systems. Technical Report

CMU/SEI-2003-TN-013, Carnegie Mellon University, 2003.

[52] M.Howard, D. Leblanc, and J. Viega. 19 Deadly Sins of Software Security.

McGraw-Hill, 2005.

[53] M.Howard and S.Lipner. The Security Development Lifecycle. Microsoft Press,

2006.

[54] Microsoft. Security risk management guide.

http://www.microsoft.com/technet/security/guidance/complianceandpolicies/

secrisk/default.mspx - accessed 10.04.2008.

[55] Microsoft. Threat modeling tool. http://www.microsoft.com/downloads/

details.aspx?familyid=62830f95-0e61-4f87-88a6-e7c663444ac1&displaylang=en -

accessed 23.01.2008.

[56] Sun Microsystems. Java servlet technology. http://java.sun.com/products/servlet/

- accessed 30.04.2008.

[57] J. Millving and M. Pedersen. Tool support for a software security process. MSc

Thesis, Division for Databases and Information Techniques, Department of Com-

puter and Information Science Linköpings universitet, Linköping, Sweden, 2007.

[58] MITRE. Common vulnerabilities and exposures (cve). http://cve.mitre.org - ac-

cessed 10.03.2008.

[59] A. P. Moore, R. J. Ellison, and R. C. Linger. Attack modeling for information secu-

rity and survivability. Dependable Systems and Networks Conference, Gothenburg,

Sweden, 2001.

147

REFERENCES

[60] National Institute of Standards and Technology (NIST). The national vulnerability

database. http://nvd.nist.gov/ - accessed 10.03.2008.

[61] Open-Source. Seamonster - security modeling software.

http://sourceforge.net/projects/seamonster/ - accessed 22.05.2008, 2007.

[62] OSVDB. The open source vulnerability database. http://osvdb.org/ - accessed

10.03.2008.

[63] D.L. Parnas and M. Lawford. The role of inspection in software quality assurance.

Software Engineering, IEEE Transactions on, 29(8):674–676, Aug 2003.

[64] S. Polepeddi. Software vulnerability taxonomy consolidation. Technical Report

UCRL-TH-208822, Lawrence Livermore National Laboratory, 2005.

[65] The Open Web Application Security Project. Owasp category:vulnerability.

http://www.owasp.org/index.php/Category:Vulnerability - accessed 10.03.2008.

[66] The Open Web Application Security Project. Threat risk modeling.

http://www.owasp.org/index.php/Threat Risk Modeling - accessed 23.01.2008.

[67] J. Saltzer and M. Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 9:1278–1308, Sep 1975.

[68] J.H. Saltzer. Protection and the control of information sharing in multics. Com-

munications of the ACM Volume 17, Issue 7, 1974.

[69] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.

[70] M. Schumacher. Security Engineering with Patterns: Origins, Theoretical Models,

and New Applications. Springer, 2003.

[71] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-

merlad. Security Patterns: Integrating Security and Systems Engineering. John

Wiley & Sons, 2005.

[72] M. Schumacher and U. Roedig. Security engineering with patterns. Proceedings of

Pattern Language of Programs, 2001.

[73] Secunia. Secunia vulnerability archive. http://secunia.com - accessed 10.03.2008.

148

REFERENCES

[74] SecurityFocus. The securityfocus vulnerability database.

http://www.securityfocus.com - accessed 10.03.2008.

[75] SHIELDS. Shields project web site. http://er-

projects.gf.liu.se/projectweb/473186f5c1d60/Index.html - accessed 10.03.2008.

[76] G. Sindre and L. Opdahl. Eliciting security requirements with misuse cases. Re-

quirements Engineering, 10(1):34Ű–44, 2005.

[77] L. Røstad. An extended misuse case notation: Including vulnerabilities and the

insider threat. In Proceedings of The Twelfth Working Conference on Requirements

Engineering: Foundation for Software Quality (REFSQŠ06), Luxembourg, 2006.

[78] C. Steel, R. Nagappan, and R. Lai. Core Security Patterns, Best Practices and

Strategies for J2EE, Web Services, and Identity Management. Prentice Hall, 2006.

[79] R.C. Summers. Secure Computing: Threats and Safeguards. McGraw-Hill College,

1997.

[80] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, 2004.

[81] Internet Security Systems. X-force alerts and advisories. http://xforce.iss.net -

accessed 10.03.2008.

[82] Sparx Systems. Enterprise architect web site. http://www.sparxsystems.com.au/

- accessed 07.03.2008.

[83] P. Torr. Demystifying the threat modeling process. Security & Privacy, IEEE,

3(5):66–70, Sept-Oct 2005.

[84] K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms: a taxonomy

of software security errors. Security & Privacy, IEEE, 3(6):81–84, Nov-Dec 2005.

[85] K.R. van Wyk and G. McGraw. Bridging the gap between software development

and information security. Security & Privacy, IEEE, 3(5):75–79, Sept-Oct 2005.

[86] J. Viega and G. McGraw. Building Secure Software: How to Avoid Security Prob-

lems the Right Way. Addison-Wesley, 2001.

149

REFERENCES

[87] R. Winston. Managing the development of large software systems. Proceedings of

IEEE WESCON 26, 1970.

[88] J. Yoder and J. Barcalow. Architectural patterns for enabling application security.

Proceedings of PLoP, 1997.

150

Appendix A

Glossary

Actor

Active entity external to the system. An actor interacts with the system and can be a

human being or other computing system.

Application Programming Interface (API)

Source code interface that defines the services provided by a code library. The API

defines a contract between a caller and the callee, i.e. the code interface.

Asset

Information or resources which have value to an organization or person. An asset is to

be protected by the system.

Attack Tree (AT)

An attack tree is a way of modelling attacks to a computer system. The tree describes

the different ways in which the goal attack (the root node) can be achieved.

Common Vulnerabilities and Exposures (CVE)

The CVE is a dictionary of publicly known information about security vulnerabilities

and exposures.

Countermeasure

Action taken in order to protect an asset against threats. In a software system, this

refers to features that are implemented to prevent attacks, not to fulfill a functional

requirement.

151

A. GLOSSARY

Countermeasure model

A formal representation of a countermeasure.

Data-flow Diagram (DFD)

A data-flow diagram is a diagram describing the data flow through an information

system. These diagrams contain data flow between external entities, processes and

data stores.

Eclipse Modeling Framework (EMF)

The EMF project is a modeling framework and code generation facility for building

tools and other applications based on a structured data model.

Graphical Editing Framework (GEF)

Eclipse Graphical Editing Framework is a framework providing rendering and layout

functions to create a graphical editor from an existing application model.

Graphical Modeling Framework (GMF)

The Eclipse Graphical Modeling Framework provides a generative component and run-

time infrastructure for developing graphical editors based on EMF and GEF.

Injection flaw

Common type of security flaw in Web applications. Injection occurs when user-supplied

data is sent to and accepted by an interpreter as part of a command or query.

The Open Web Application Security Project (OWASP)

The Open Web Application Security Project is a worldwide free and open community

focused on improving the security of application software.

Pattern instantiation

Pattern instantiation refers to the process of implementing a software pattern.

Privilege

The right to perform a certain action in a system.

Risk Management Framework (RMF)

RMF is used in two contexts through the thesis:

1) as some process for handling risk in software development projects.

2) Cigital’s risk management process, the Risk Management Framework (22).

152

Security activity

An activity performed during the software lifecycle to fulfill one or more security goals.

Security Activity Graph (SAG)

A security activity graph is a tree structure of activities that can be implemented during

software development to prevent vulnerabilities. An activity is any measure that seeks

to improve the security of the final software product.

Security pattern

A well-understood solution to a recurring security problem.

Security Vulnerability Repository Service (SVRS)

Security Vulnerability Repository Service is part of the technical approach of the EU

project SHIELDS. The SVRS is an internet-accessible knowledge repository to be used

by security tools.

Software Development Lifecycle (SDL)

The software development lifecycle is a general term for a complete software develop-

ment process. A number of different SDL models have been created.

Spoofing, Tampering, Information disclosure, Denial of Service, Elevation

of privilege (STRIDE)

STRIDE is a security threat modelling practice where potential security threats are

categorised using six threat categories: spoofing, tampering, information disclosure,

denial of service and elevation of privilege.

Tampering

A category of attacks based on changing information without the right to do so.

Threat

A potential for a security breach of an asset. A threat is a potential attack, it may or

may not be applicable to a given system.

Unified Modeling Language (UML)

The Unified Modeling Language is a family of graphical notations used to describe and

design software systems. The language is particularly suited for systems built using the

object-oriented style.

153

A. GLOSSARY

Vulnerability

A feature of a system that may be exploited in a way that violates the system security.

Vulnerability Cause Graph (VCG)

A vulnerability cause graph is a security modelling technique used to analyse causes

of software vulnerabilities. The causes of a vulnerability and their relationships are

represented as a directed acyclic graph.

Vulnerability model

A formal representation of a vulnerability.

XML Metadata Interchange (XMI)

XMI is a standard for exhanging metadata via XML. In the context of this thesis it

can be viewed as an interchange format for UML models.

154

	Title Page
	Problem Description
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Thesis Outline

	II Prestudy
	2 Software Security Practices
	2.1 Introduction to Software Security
	2.2 Pillars of Software Security
	2.2.1 Risk Management
	2.2.2 Security Touchpoints and Countermeasures
	2.2.3 Knowledge Management

	3 Security Modelling
	3.1 The Need for Methods and Tools
	3.2 Modelling Techniques
	3.2.1 Threat Modeling
	3.2.2 Attack Trees
	3.2.3 Abuse and Misuse Cases
	3.2.4 Vulnerability Cause Graphs
	3.2.5 Security Activity Graphs

	4 Countermeasures
	4.1 Security Patterns
	4.1.1 Security Patterns as a Countermeasure

	4.2 Architectural Analysis and Reviews
	4.2.1 Architectural Risk Analysis
	4.2.2 Architectural Reviews

	5 Sharing Security Knowledge
	5.1 Why Sharing is Important
	5.2 Vulnerability Repositories
	5.3 Security Knowledge at Development Time

	III Contribution
	6 Research Agenda
	6.1 Hypothesis and Objectives
	6.2 Research Process
	6.3 Work Plan

	7 Using a Countermeasure Model During Development
	7.1 Approach and Countermeasure Modelling
	7.2 Using Security Design Patterns

	8 Extending Seamonster
	8.1 Current Status
	8.2 Possible Further Development

	9 Realisation
	9.1 Realisation Description
	9.2 Requirements
	9.3 SeaMonster
	9.4 Design
	9.5 Implementation
	9.5.1 Security Activity Graph Plug-in

	9.6 Testing
	9.6.1 Test Summary

	10 Case Study
	10.1 Approach and Case Description
	10.2 Analysis and Design
	10.2.1 Countermeasure Modelling
	10.2.2 Design with Countermeasures

	IV Evaluation and Conclusion
	11 Evaluation and Discussion
	11.1 Contributions
	11.1.1 Extension of SeaMonster
	11.1.2 Security Pattern Design Templates
	11.1.3 Case Study and Related Process

	11.2 Research Method
	11.3 Other Initiatives

	12 Conclusion
	12.1 Conclusion
	12.2 Further Work

	V Appendix
	References
	A Glossary

