Noname manuscript No.
(will be inserted by the editor)

Model Generation of Component-based Systems.

Sébastien Salva® - Elliott Blot

the date of receipt and acceptance should be inserted later

Abstract This paper presents COnfECt, a model learning approach, which aims
at recovering the functioning of a component-based system from its execution
traces. We refer here to non concurrent systems whose internal interactions among
components are not observable from the environment. COnfECt is specialised into
the detection of components of a black-box system and in the inference of mod-
els called systems of Labelled Transition Systems (LTS). COnfECt tries to detect
components and their specific behaviours in traces, then it generates a LTS for ev-
ery component discovered, which captures its behaviours. Besides, it synchronises
the LTSs together to express the functioning of the whole system. COnfECt relies
on machine learning techniques to build models: it uses the notion of correlation
among actions in traces to detect component behaviours, and exploits a cluster-
ing technique to merge similar LTSs and synchronise them. We describe the three
steps of COnfECt and the related algorithms in this paper. Then, we present some
preliminary experimentations.

Keywords Model Learning; Formal models; Reverse Engineering; Component-
based Systems.

1 Introduction

The effort required for writing (formal) models has been a strong barrier to the
widespread adoption of model-based testing or verification approaches in the in-
dustry. Most of today’s developers indeed feel that writing models is a difficult,
long and error-prone task. This obstacle can be overcome with model learning ap-
proaches (Angluin, 1987; Biermann and Feldman, 1972; Ernst et al, 1999; Meinke

Sébastien Salva

* Corresponding author

University Clermont Auvergne, IUT of Clermont-Ferrand, LIMOS, F-63000 CLERMONT-
FERRAND, FRANCE

E-mail: sebastien.salva@Quca.fr

Elliott Blot
University Clermont Auvergne, LIMOS, F-63000 CLERMONT-FERRAND, FRANCE
E-mail: elliott.blotQuca.fr

2 Sébastien Salva®, Elliott Blot

and Sindhu, 2011; Lorenzoli et al, 2008; Ohmann et al, 2014; Durand and Salva,
2015; Pastore et al, 2017), which have proven to be valuable for recovering models
that can be exploited in several software engineering steps. The inferred models
can be seen as documentation useful for understanding the functioning of a sys-
tem; they can be completed and improved to become formal specifications; several
papers also showed that model learning can be employed within effective bug find-
ing techniques (Mariani and Pastore, 2008; Hangal and Lam, 2002; Tappler et al,
2017), or can be used to directly generate test cases (Dallmeier et al, 2012; Shahbaz
and Groz, 2013; Durand and Salva, 2015).

A substantial part of these approaches are specialised to infer models from
black-box systems. These offer the advantage of remaining usable when the appli-
cation code is not available or when the system internal state cannot be known.
These approaches capture the behaviours of systems interacting with their envi-
ronments in a variety of models, e.g., states machines (Angluin, 1987; Biermann
and Feldman, 1972) or invariants (Ernst et al, 1999; Meinke and Sindhu, 2011).
The model generation is performed either by interacting with the system (active
approaches), or by analysing a set of execution traces resulting from the moni-
toring of the system (passive approaches). In this paper, we focus on the second
category.

In this context, several papers recently proposed innovative solutions for design-
ing new learning algorithms and tools, which have the capability to infer symbolic
models (Mariani et al, 2017), resource-aware models (Beschastnikh et al, 2011;
Ohmann et al, 2014), timed models (Pastore et al, 2017), and which can be ap-
plied to more and more complex systems. But, few works (Groz et al, 2008; Mariani
and Pastore, 2008; Beschastnikh et al, 2014) dealt with the generation of models
from integrated systems made up of components. Yet numerous present systems
are constituted of reusable features or components, which interact together. The
inference of models encoding the functioning of every component into a sub-model
and how they interact together would greatly ease the readability and analysis of
the whole system. Furthermore, such models would offer the possibility to concen-
trate the efforts for bug detection on some specific sub-parts of the system. These
observations motivate this work, which addresses these two research challenges:
Challenge 1: given a system under learning SUL, how to learn a model from
its execution traces, in such a way that the model captures the behaviours of the
SUL components and their synchronisations? Challenge 2: how to manage the
level of generalisation of the models, and how to synchronise the sub-models of
components?

To address these challenges, we designed a new method called COnfECt (COr-
relate Extract Compose) and a corresponding tool for learning models of component-
based systems. COnfECt is a passive model learning approach, which generates
a system of LTSs (Labelled Transition Systems) from execution traces of non
concurrent systems whose internal interactions among components are not ob-
servable from the environment. This is often the case for systems having a tightly
coupled architecture (strong dependency among components), e.g., embedded sys-
tems (vending machines, electronic toys), Internet Of Things (IoT) devices (smart
thermostat, security camera) or for software made up of modules or subprograms
that are dependent upon each other.

COnfECt is composed of three main steps called Trace Recovery, Trace Analy-
sis € Extraction and LTS synchronisation. The first step derives formatted traces

Model Generation of Component-based Systems. 3

from raw messages, the second analyses the traces, tries to identify distinctive
sub-sequences in traces and to link them to separate components. The last step
generates a system of LTSs by means of three strategies. This model encodes the
behaviours of every component by a LTS and shows how they are synchronised
together. The strategies adapt the LTS synchronisation, and provide several sys-
tems of LTSs having different levels of generalisation. These steps rely on machine
learning techniques to detect the behaviours of components: traces are analysed
with Correlation factors based on String similarity metrics and algorithms; the
LTS Synchronisation step relies on a clustering technique to group similar LTSs.

We have implemented a prototype tool to experiment COnfECt and evalu-
ate its benefits. We provide a preliminary evaluation in the paper, which assesses
the correct component detection, the relevance and size of the models, and the
efficiency /scalability of the algorithm, compared to two other model learning ap-
proaches kTail and CSight. We also examine potential threats to the validity of
our evaluation.

Paper organisation: Section 2 presents some papers related to our approach
and our motivations. Section 3 recalls some definitions about the LTS model.
Section 4 gives an overview of the functioning of COnfECt with an example.
Section 5 describes the steps of the approach. The next section shows the results
of the experimentation of COnfECt and discusses about the threats to validity.
Finally, Section 8 summarises our contributions and draws some perspectives for
future work.

2 Related Work

Model learning can be defined as a set of methods that infer a specification by
gathering and analysing system executions and concisely summarising the frequent
interaction patterns as state machines that capture the system behaviour (Ammons
et al, 2002). These models, even if partial, can serve many purposes, e.g., they can
be used as documentation, examined by designers to find bugs, or can be given
to testing methods for the test case generation. Models can be generated from
different kinds of data samples such as affirmative/negative answers (Angluin,
1987), execution traces (Krka et al, 2010), source code (Pradel and Gross, 2009),
or network traces (Antunes et al, 2011).

Most of the approaches fall into two categories called active and passive model
learning, although some works cover both (Petrenko et al, 2017). Active learning
approaches, e.g., (Angluin, 1987; Dupont, 1996; Raffelt et al, 2005; Alur et al,
2005; Berg et al, 2006; Howar et al, 2012; Hossen et al, 2014), repeatedly query
systems or humans to collect positive or negative observations, which are studied
to build models. Many existing active techniques have been conceived upon two
concepts, the £* algorithm (Angluin, 1987) and incremental learning (Dupont,
1996). This model learning category is actively studied to make the approaches
more effective and efficient. For instance, some researchers recently proposed opti-
misations to reduce the query number (Aichernig and Tappler, 2017), while others
tackled systems having specific constraints (Hossen et al, 2014). Active learning
cannot be applied on any system though. For instance, uncontrollable systems
cannot be queried easily, or the use of active testing techniques may lead a system
to abnormal functioning, because it has to be reset many times.

4 Sébastien Salva®, Elliott Blot

This brings us to the second category, which includes the techniques that pas-
sively generate models from a given set of samples, e.g., a set of execution traces.
These techniques are said passive since there is no direct interaction with the sys-
tem. Models are here often constructed by encoding sample sets with automata
whose equivalent states are merged. The state equivalence is usually defined by
means of state-based abstractions or event sequence abstractions. The approaches
that use state-based abstractions, e.g., (Meinke and Sindhu, 2011), adopted the
generation of state-based invariants to define equivalence classes of states that are
combined together to form final models. The Daikon tool (Ernst et al, 1999) was
originally proposed to infer invariants composed of data values and variables found
in execution traces. With event sequence abstractions, the abstraction level of the
models is raised by merging equivalent states (Biermann and Feldman, 1972; Mar-
iani and Pezze, 2007). In the kTail approach (Biermann and Feldman, 1972), the
equivalent states are those having the same k-future, i.e. the same event sequences
having the maximum length k. kTail has been later enhanced with Gk-tail to gen-
erate Extended Finite State Machines encoding data constraints (Lorenzoli et al,
2008; Mariani et al, 2017). The methods Synoptic (Beschastnikh et al, 2011) and
Perfume (Ohmann et al, 2014) also reuse kTail. The former generates more precise
models by means of the generation of temporal invariants from logs, which have
to be satisfied by the models. The later, which is an improvement of Synoptic, in-
fers resource-aware models capturing behavioural executions that differ in resource
consumption. More recently, Pastore et al (2017) proposed Tk-tail to support the
learning of timed automata.

2.1 Key observations and motivations

After having studied the literature, we have firstly observed that few papers tackled
Challenge 1 or 2. Groz et al (2008) proposed to generate a controllable approxi-
mation of components through active testing. Unlike our approach, the learning
of the components is done in isolation, i.e. there is no detection of components
as these are known and studied one after the other. Mariani and Pastore (2008)
proposed an automatic detection of failures in log files by means of model learning.
Their approach offers the possibility to split the original log file into as many files
as components. The latter are distinguished in logs by means of regular expres-
sions, which have to be written by end-users. Once the trace set is segmented by
component, the models are generated in isolation. Unlike the LTSs provided by
COnfECt, these models do not show how components are synchronised.

CSight (Beschastnikh et al, 2014) seems to be the major approach that shares
several purposes of COnfECt. Csight infers models of concurrent communicating
systems, which communicate through synchronous channels. It is assumed that the
channels and components are known. Csight also requires specific trace sets cap-
turing this notion of channels: the trace set is segmented with one subset (called
process trace set) by component. The exchanged messages are observable and com-
posed of input and output events. Csight has five main stages: 1) log parsing and
mining of invariants that must hold in the models 2) generation of a concrete FSM
that captures the functioning of the whole system by recomposing the traces of
the different components; 2) generation of a more concise abstract FSM; 3) model
refinement with invariants, and 4) generation of Communicating FSM (CFSM).

Model Generation of Component-based Systems. 5

The latter show the synchronizations of the concurrent components by means of
the channels and of the input/ outputs, e.g., when the emitter sends an output,
the receiver gets an input with the same symbol and vice versa. COnfECt aims
at learning models from traces of component-based systems, where the compo-
nent interactions are hidden. In the paper, we will use as example a connected
thermostat integrating several components. With this king of system, the compo-
nent interaction is not observable. As a consequence, CSight cannot infer a model
per component, whereas COnfECt decomposes traces to recover the component
behaviours and infer models. Furthermore, we consider that the component num-
ber is unknown and traces are not segmented. Hence the assumptions required by
CSight and COnfECt are quite different. But COnfECt needs of other assumptions
on the system under learning. In a way, COnfECt targets more the systems having
a tightly coupled architecture, whereas CSight seems more to target the systems
having a loosely-coupled architecture, where components can remain autonomous
and allow middleware software to manage communication between them. The
models given by CSight should be more precise than those given by COnfECt
because CFMS have to be compliant with the behaviours of the traces (thanks
to the mining and satisfiability of invariants). At the moment, we do not focus
on the satisfiability of mined invariants as this topic has been studied in several
papers, e.g., (Beschastnikh et al, 2014; Ohmann et al, 2014). However, this could
be implemented in COnfECt in future work. Instead, our approach proposes three
strategies to adapt the model generalisation (from a model that is compliant to
the behaviours found in traces to a more general model that may call its related
components at each of its states). We believe that this notion of generalisation level
is important as the original traces may only capture a part of the real behaviours
of a system.

Prior to this paper, we laid the first stone of the approach in (Salva and Blot,
2018), in which we proposed to complement Gk-tail for the generation of models
of component-based systems. We defined the CEFSM model (Callable Extended
Finite State Machine), which is composed of variables and constraints. CEFSMs
cannot be composed together though, which reduces their re-usability. Besides, we
had not implemented the given algorithms nor evaluated them. We also proposed
an overview of this work in (Salva et al, 2018). Like in this paper, we considered the
LTS model so that we can reuse the LTS theoretical background. We introduced
the general functioning of COnfECt and started an evaluation on the component
detection. In this paper, we define the Correlation coefficient allowing to recognise
the call of components in traces. We define the LTS similarity coefficient allowing
to provide several LTS synchronisation strategies. Furthermore, we present the
algorithms implementing the steps of COnfECt and provide the results of a more
thorough evaluation carried out to assess the relevance of the models generated
by COnfECt and its efficiency.

3 Preliminary Definitions

COnfECt aims to generate models of component-based systems, where the inter-
actions among components are not observable. The specific notions of communi-
cations or channels, which can be found in specific models such as the CFSM, are
not required here. Like in (Falcone et al, 2011; van der Bijl et al, 2004), we propose

6 Sébastien Salva®, Elliott Blot

to express the behaviours of atomic components with the well established Labelled
Transition System (LTS) model. The use of LTS allows to exploit the definitions
related to the LTS composition, for instance given by van der Bijl et al (2004). A
composite model, which we denote system of LTSs, is defined with respect to the
LTS parallel composition, which synchronises LTSs on their shared actions, called
synchronisation actions.

The LTS model is firstly defined in terms of states and transitions labelled by
actions, taken from a general action set £, which expresses what happens. 7 is a
special symbol encoding an internal (unobservable) action; it is common to denote
the set LU T by £+.

Definition 1 (LTS) A Labelled Transition System (LTS) is a 4-tuple (Q, q0, X,
—) where :

— @ is a finite set of states, Qr C @ is the non-empty set of final states;

— ¢0 is the initial state;

— YU {7} C L is the finite set of actions, with 7 the internal action;

— »C QxXU{r} xQ is a finite set of transitions. A transition (g, a, q') is also
denoted ¢ = ¢'.

We use the generalised transition relation — to represent LTS paths: g —-%"
/ ai An / .
¢ =des 3¢0...¢n, ¢ = q¢0 — q1...¢n—1 — ¢n = ¢ . The concatenation of two
action sequences o1, o2 € LI is denoted oi.02. € denotes the empty sequence.
Finally, we define the runs and traces of a LT'S:

Definition 2 (Runs and traces) Let L = (Q, ¢0, X, =) be a LTS.

1. A run g0ai...qx—1axqyx is an alternate sequence of states and actions such that:
3qi—1,qi,ai, (1 <i <k):q0 2% g €—*. Runs(L) is the set of runs found
in L. Runsp(L) is the set of runs that end in a state g of F with F C Q;

2. the trace of a run r = ¢0ai...qx—1akqk, denoted Trace(r) is the sequence
ag...a. Tracesp (L) = {Trace(r) | r € Runsp(L)};

The integration of two components C7 and C2 modelled with LTSs is often
defined in the literature by two operations. The first one is the parallel composition
of C1 and C3 denoted C || C2, which synchronises their synchronisation actions.
This composition is often followed by the hiding of the communications between
C1 and C> to express that only the communications with the environment are
observable. This operation is defined by the relation hide S in C; || C2 with S
the set of synchronisation actions. We refer to (van der Bijl et al, 2004) for the
definitions of theses two LTS operators. This principle of LTS composition leads
to a model called system of LTSs, which describes a component-based system:

Definition 3 (System of LTSs) A system of LTSs SC is the couple (S, C') with
C ={C1,...,Cr} anon empty set of LTSs, and S a set of synchronisation actions.
Traces(SC) denotes the trace set Traces((hide S in (C1 || C2 || - || Cn))-

4 COnfECt Overview

COnfECt (COrrelate Extract Compose) firstly aims at answering to Challenge 1:
how to infer a system of LTSs SC from the traces of SUL, in such a way that

Model Generation of Component-based Systems. 7

Raw Trace Trace Analysis — LTS Syst f
—> Traces(SUL; ——»STraces= —> L——»-oystem O
Messages Formatting > (SUL) > & Extraction T1,...,Tn} Synchronisation LTSs SC
f uses f uses ? uses
L d L] i d
Regular ex ! ! ! LTS similarity
A 9 P I Action correlation | Synchronisation strategies;
ction analysis 1 I T N
1 1 ! kTail
1]]

Fig. 1: The COnfECt approach overview

SC' captures the behaviours of the SUL components and their synchronisations?
Initially, COnfECt requires a set of raw messages collected from SUL. The latter
can be non-deterministic, uncontrollable or can have cycles among its internal
states. However, to answer to this research problem, we assume that SUL obeys
certain restrictions:

— H1: SUL as a black box. SUL is a black box including components from
which only communications with the environment can be observed. The inter-
actions among the components are not observable.

— H2: Synchronous execution. SUL has components whose behaviours are
not carried out in parallel. One component is executed at a time from its
initial state to one of its final states. Furthermore, we assume that messages
include timestamps.

— H3: Single root component. We suppose that the traces of Traces(SUL)
capture the behaviours of one first component calling other components.

Regarding the assumptions H1-H3, we assume that components follow a pro-
cedural behaviour: a component C1 calls another component C2 and waits for the
end of its execution. C2 starts its execution at its initial state and does some ac-
tions. Once the execution of C2 has completed, C1 proceeds its execution. These
assumptions are considered to lay the foundations of a component detection al-
gorithm from traces. These are discussed in Section 7.5. Relaxing these assump-
tions remains as part of future work. COnfECt has three main successive steps
illustrated in Figure 1. The first step takes raw messages given by monitoring
tools or found in log files, and transforms them into formatted traces. The second
step, called Trace Analysis € Extraction, tries to detect component behaviours in
Traces(SUL), and partitions it into a set of trace sets called STraces. Each trace
set of STraces captures some behaviours of one component. The last step, called
LTS Synchronisation, takes STraces and starts with the generation of one LTS
for each trace set of STraces. This step also proposes three LTS synchronisation
strategies to generate a system of LTSs SC.

Figure 3 illustrates an overview of these steps with an example of system,
which is a connected thermostat device from which HTTP traces may be collected.
The user gives as inputs: a file of messages, regular expressions to build traces, 2
factors (f f') allowing to express similarities among actions and components, two
thresholds for these factors, and a LTS synchronisation strategy. Figure 2 lists 4
HTTP messages collected from the device taken as example. COnfECt starts by
parsing these messages with regular expressions to produce the set Traces(SUL).
An example of regular expression is also given in Figure 2. It extracts parameters
and a label, which shows what happens.

8 Sébastien Salva®, Elliott Blot

Jul 18, 2018 08:52:26.696766000 CET;Host=192.168.1.44;Dest=192.168.
1.4; Protocol=HTTP; Verb=GET Uri=/devices HITTP/1.1;

Jul 18, 2018 08:52:30.362482000 CET;Host=192.168.1.4;Dest=192.168.
1.44; Protocol=HTTP; Verb=GET Uri=/json .htm?type=command¶m=
udevice&idx=115&nvalue=0&svalue=15.00 HTTP/1.1;

Jul 18, 2018 08:52:30.522163000 CET;Host=192.168.1.44;Dest=192.168.
1.4; Protocol=HTTP;HTTP/1.1 status=200 response=0K;

Jul 18, 2018 08:52:31.598645000 CET;Host=192.168.1.4;Dest=192.168.1.
44;Protocol=HTTP;HTTP/1.1 status=200 response=OK data=<script lang
uage="javascript”><!—— function dept_onchange (frmselect) {frmselect.
submit ();} //——></script><head><title >Wemosl</title ></head>;

Example of regular expression:

“(?<date>\w{3} \d{2}, \d{4} \d{2}:\d{2}:\d{2}.\d{3})\d{6}\s (CET);(

<param 1> (\wt\d+\\d -\ \d+\\d4)); (7 < param? > (\wrb=\d+1. \d+ N d . d+
));(? <param3>[";]+);(? <param4>["=]+=[A-Z]{3,4})\ s(?<paramb5>(Uri=)(

?<label >["?]+))\sHTTP/1.1;$

?

Fig. 2: Example of 4 raw messages collected from a connected thermostat device.
The regular expression retrieves a label and 5 parameters here. The label expres-
sion will be the label of the action in the formatted trace.

Figure 3 gives, in Traces(SUL), a complete formatted trace, composed of 16
actions, which was extracted by means of 4 regular expressions that assign the
called URL and the HT'TP responses to labels, and keep some data, e.g., the tem-
perature with the parameter svalue. The second step of COnfECt tries to identify
distinctive component behaviours in the traces of Traces(SUL). It processes traces
and computes a Correlation coefficient with the factor f, which assesses the de-
gree of correlation of successive actions in a trace. Intuitively, when two successive
action sub-sequences are not correlated, then we consider that they come from
two distinctive components. We propose several means to define the Correlation
coefficient in Section 5. Let us suppose that the trace of Figure 3 has been anal-
ysed and that COnfECt has detected the 3 sub-sequences in bold. This means
that a first component has produced the first action of the trace. Then, a second
component has been invoked. The latter has produced the two actions in bold (/j-
son.htm and Response) and has terminated its execution. The first component has
proceeded its execution and so forth. These special sequences in bold are extracted
and replaced by the synchronisation actions call and return, which express that
a component has been invoked. The extracted sub-sequences are placed into new
trace sets. In our example, 4 trace sets T1-T4 are built. At the end of this step,
COnfECt returns a set STraces composed of these trace sets.

In the beginning of the third step (STEP 3A LTS Generation in the figure),
every set of STraces is transformed into a LTS by converting traces into LTS paths,
which are then joined on the initial state only. Together, these LTSs form an initial
system of LTSs. In our example, as we have 4 trace sets, we obtain a system of 4

LTSs. These LTSs include synchronisation actions starting with call and return.

Given two LTSs C'1 and Cs, when the transition ¢ % g’ of the LTS C1 is fired,

we say that C7 calls the LTS C2. This action means that the current execution is

being paused while another LTS C5 starts its execution at its initial state. When

the transition ¢ M) q' of the LTS (5 is fired, we say that Cs is called. The

return_Csy return_Cy

execution of C2 ends once the transition ¢ ———2 ¢’ in Cy or ¢ ————% ¢’
in Cs is fired. Now, COnfECt proposes three strategies for synchronising these
LTSs together. The main purpose of these strategies is to address challenge 2,

Model Generation of Component-based Systems.

[Traces(SUL)={

/devices() /json.htm(idx:=115,svalue:=15.00) Response(status:=200)
Response(status:=200,data:=[1]) /json.htm(idx:=115,svalue:=16.00)
Response(status:=200) /devices() Response(status: =200,data:=[1])
/hardware() Response(status:=200,data:=[2]) /config() /json.htm

Res, 200) /devices() R (status:=200,data:=[1])
/hardware() Response(status:=200,data:=[2]) /config() /json.htm
(idx:=0,switchcmd:=0n) Response(status:=200)Response(status:=200,

Jtools()

-‘I' /json.htm(

STraces={ sv:l;lj:ézzl 1155 o)
[T1={/devices(call_C2 return_C2 Response(status:=200,data:=[1])
lcall_C3 return_C3 /devices() Response(status:=200,data:=[1]))
/hardware() Response(status:=200,data:=[2]) /config() call_C4 call_ 234
return_C4 Response(status:=200,data:=[2]) /tools()
Response(status:=200,data:=[3]}

T2={call_C2 /json.htm(idx:=115,svalue:=15.00) Response(status:=200)

return_C_2}

T3={call_C3 /json.htm(idx:=115,svalue:=16.00) Response(status:=200) J:

return_C3} . idx:=0,
T4={call_C4 /json.htm(idx:=0,switchcmd:=0n) Response(status:=200) switchcmd:=0n)

return_C4} }

Response
status:=200,
data:=[2]) /tools() Resp us:=200,data:=[3]) ‘r data'=

(idx:=0,switchcmd:=0n) Response(status:=200) Response(status:=200, Response(
Idata:=[2]) /tools() Response(status:=200,data: =[3]) @ status:=200 Response(
turn C234 Jdata:=[1) status:=200,
) o
1)< 10k

4" jconfigl a Response("'/ hardware()
Traces(SUL)={ Response(status: =200,
/devices() /json. idx:=115,svalue:=15.00) :=200) |status:=20(, data:=[2])
Response(status:=200,data:=[1]) /json.htm(idx:=115,svalue:=16.00) data:=[2]

3D

Response(return_
oL C

234

Response(return
tatus:=200) (234

Response(return_
0

-l i 2301 -
Jdevices() call_C2 return_C2 status:=200, call_C3

data:=[1])
O N W i, h
fison.htm(
Response(Response(eturn C3 o115,

status:=200, R
data:=[1]).__ /devices(

status:=200,
mnfig() ata:= mhardwam(

call_C4 Response(Response(
- status:=200, status:=200,

svalue:=16.00)

fjson.htm(Re (
idx: =115, sponse
cal €2 e status;= _ retum_C2

(a2-H500(a)-200(a7)—>)

/ison.htm(
call_C3 idx:=115, Response(

status:= rEtum_c

Jjson.htm(
idx:=0, Response(
call_ C4 gyitchemd status:= retumn_C4
:=0n) 200) 1

Fig. 3: The COnfECt approach overview

0)
Response(return_

st

atusi=_ 234
ELT0

which stems from the fact that the traces collected from SUL usually do not
capture all of its valid behaviours. The strategies make possible the generation
of models that accept more behaviours by adapting the component integration
differently. The first strategy called Strict synchronisation only reduces the LTSs
by applying the kTail approach to merge equivalent states. The second strategy,
called Weak synchronisation, tries to detect the components that have similar
behaviours by means of a LTS similarity coefficient, defined by the factor f’. In

ey .. call_C;.return_C;
addition, the transition sequences q1

q2 are replaced by loops to

allow repetitive component calls. Figure 3 illustrates the use of this strategy. The
LTSs of the components C2-C4 are detected as similar and are joined. This gives
the new LTS C234. Then, the LTS C1 is modified to allow repetitive component

10 Sébastien Salva*, Elliott Blot

calls (STEP 3B). Finally, kTail is applied on the resulting LTSs to merge equivalent
states. Several states are merged in this example, e.g., q3, q4, g5 (STEP 3C).
These final LTSs capture more behaviours than those given by the Strict strategy.
The last strategy, called Strong Synchronisation, provides even more general L'T'Ss
by returning systems of LTSs such that every LTS allows the invocation of its
components at any of its states. In the example of Figure 3, the LTS C1 calls
the LTSs C2-C4. Therefore, the Strong strategy adds transition loops of the form

call-Cs returnCs q1(2 < i < 4) at every state of C1. The LTSs C2-C4 are
unmodified as they do not call other LTSs.
These steps are detailed in the next sections.

5 The COnfECt Approach
5.1 Step 1: Trace Formatting

COnfECt takes raw messages that are totally ordered by means of their time-
stamps. These messages are firstly parsed and analysed with regular expressions
to retrieve the actions performed by SUL and their related data. We consider
that these expressions transform a message into an action of the form a(a) with
a a label and a an assignment of some parameters. For example, the action
swith(id := 115,emd := on) is made up of the label ”switch” followed by the
assignment of two parameters. These regular expressions may also be used to fil-
ter out irrelevant messages. A manual analysis of the messages is often required
by end-users to derive regular expressions. Although this task may be carried out
with little effort on messages collected from small systems, it is known that this
may become impractical when SUL is large or complex. Several works addressed
this problem (Mariani and Pastore, 2008; Fu et al, 2009; Makanju et al, 2012;
Vaarandi and Pihelgas, 2015; Messaoudi et al, 2018; Zhu et al, 2018) and pro-
posed approaches and tools that automatically mine patterns from log files. These
patterns may be used to quickly derive regular expressions.

Then, COnfECt proposes four ways to split a list of actions into traces: by
requesting a trace identifier, by inspecting timestamps, or by applying the two
ordering combinations of these two options. The first mode, proposed by several
model learning approaches, combines actions having the same identifier into the
same execution trace. The second mode analyses the timestamps of every pair of
successive actions and computes means of time intervals. Then, it searches for gaps
(distinctive longer durations), which are usually observed when an execution trace
ends and another one begins. The detection of these gaps is used for the trace
recognition and extraction.

At the end of this steps, we assume having a trace set denoted Traces(SUL),
which gathers traces of the form a1(a1)...ar (o).

5.2 Step 2: Trace Analysis & Extraction
This step identifies component behaviours in the traces of Traces(SUL), it splits

them and returns a set STraces = {Ti,...,Tn} such that a trace set T of
STraces includes traces of one component. Algorithm 1, which implements this

Model Generation of Component-based Systems. 11

Algorithm 1: Trace refinement Algorithm

input : Traces(SUL) = {o1,...,0m}
output: STraces = {T4,..., T}
T ={}

STraces = {T1 };
foreach o € Traces(SUL) do
1 ’ .
0105 ...0p,=Inspect(o);
STraces=Extract(cyoy . ..o}, T1);

oA W N R

=]

return STraces;

steps, is mostly based on two procedures. The procedure Inspect covers the traces
of Traces(SUL) and segments them into sub-sequences. These sequences are ex-
tracted and placed into new trace sets in STraces by the procedure Extract. The
trace sets of STraces will produce LTSs. These procedures are explained below.

5.2.1 Trace analysis (procedure Inspect)

The fundamental idea of COnfECt is that a component should be recognizable
by its behaviour in comparison to the behaviours of the other components. We
hence cover the traces of SUL with a Correlation coefficient, which helps recog-
nise different component behaviours. This coefficient evaluates the correlation of
action sequences in the traces of Traces(SUL), i.e. the degree to which succes-
sive actions are related according to all the traces of Traces(SUL). We want a
flexible coefficient, which could be adapted in accordance to the sort of system
under learning and to the knowledge we have about this system. We define the
Correlation coefficient between two actions by means of a utility function, which
involves a weighting process for representing user priorities and preferences. We
have chosen the technique Simple Additive Weighting (SAW) (Yoon and Hwang,
1995), which allows the interpretation of these preferences with weights:

Definition 4 (Correlation coefficient) Let a1(a1), az(a2) € £ and fi,... fi
be correlation factors. Corr(ai(a1),a2(az2)) is a utility function, defined as:

0 < Corr(ai(ai),az(a2)) = S8, fi(ai(ar),az(az))w; <1 with 0 < fi(a1(aa),
az(az2)) <1, w; € R§ and Zle w; = 1.

The factors can be general or established with regard to a specific context, e.g.,
network systems, Web applications, etc. We give below two factor examples:

— fi(ar(an),a2(a1))= 1 iff Id(ea1) = Id(a2) with Id(a) the assignment in « of
the parameters that identify every component. Otherwise, fi(a1(a1),a2(a2))=
0. When this factor is used, it is assumed that components are identified with
a parameter set and that this set is known and given;

— fe(a1(on), az(az2)) = max(frfizé’z;?i), frfczzécz;z)z)) with freq(aiaz) the frequency
of having the two labels a1,a2 one after the other in Traces(SUL) and freq(a1)
the frequency of having the label a;. This factor used in text mining computes
the frequency of the term aiaz in Traces(SUL) over a1 and over a2 to avoid
the bias of getting a low factor when a; is greatly encountered (resp. a2);

The first factor requires some knowledge about SUL, while the second one is
more general. Other factors could also be defined. The factor choice or definition

12 Sébastien Salva*, Elliott Blot

should be addressed by an expert of SUL. If he/she has a good knowledge about
it, he/she can choose the most appropriate factor allowing the component detec-
tion in a precise manner. In contrast, if no information about SUL is known, we
recommend the factor fa. This factor choice may be seen as a disadvantage of the
approach. This is discussed in Section 7.5. Other factors might be defined with re-
gard to the action syntax. For instance, string similarities could be used as factors
to correlate actions on their common characters. We refer to (Cohen et al, 2003)
for the presentation and definition of some of them.

From this Correlation coefficient, we define two relations to express the notion
of strong correlation of actions and action sequences. We say that strong-corr(o1)
holds when o1 has successive actions that strongly correlate. We also define the
weak correlation of two action sequences. o1 weak — corr o2 holds when the last
event of o1 does not strongly correlate with the first one of o2. In data and text
mining, these notions often depend on the considered context, this is why we use
a threshold X in the definition given below. This threshold takes a value between
0 and 1, and needs to be appraised by an expert, for instance after some iterative
attempts.

Definition 5 (Strong and Weak Correlations) Let a1(a1), a2(a2) € £, 01 =
ai...ar € L". and X € [0,1].

1. a1(aq) strong-corr az(az) <gey Corr(ai(ai), az(az)) > X.
o1 =ala) € L,

2. strong-corr(o1) iff ¢ o1 = a1(ar)...ak(ag)(k>1) € L VA1 <i<k):
ai(a;) strong-corr a;41(ait1)

. 02 = €,

3. o1 weak-corr o2 iff {02 =al...a; € £L* A —(ay strong-corr a})

The trace analysis is performed with the procedure Inspect given in Algo-
rithm 2, which covers every trace o of Traces(SUL) and potentially segments
o into (sub-)sequences such that each sequence o1 has a strong correlation and
has a weak correlation with the next sequence o2. We consider that these dis-
tinctive sequences o1 o2 express the behaviour of two components, a component
produces o1 and calls a second component, which produces 2. In Figure 3 (STEP
2 Trace Analysis), 3 distinctive sub-sequences have been detected within the trace
by means of the factor f2. We consider that these sequences reflect the behaviours
of other components that produce their own actions among the actions of a first
component, which invokes them.

5.2.2 Trace extraction (procedure Extract)

The procedure takes the traces of Traces(SUL) and extracts the sub-sequences
detected previously. Intuitively, the procedure splits two successive sequences that
have a weak correlation and adds synchronisation actions of the form call_C; and
return_C; to model component calls, with C; referring to a future LTS.

The procedure Extract(o,T.,STraces) is given in Algorithm 2. It takes a
trace o, splits it and stores the resulting trace into a set T.. Given a sequence o;
of the trace 0 = o1 ... 0%, the procedure Extract tries to find the next sequence
o such that strong-corr(c;.0;) holds. The sequence ¢’ = i41...0,-1 (or ¢’ =
Oit1-..0, when o; is not found) is extracted as it exposes the behaviour of other

Model Generation of Component-based Systems. 13

Algorithm 2: Procedures Inspect and Extract

1 Procedure Inspect(c) : 0j0h ... 0y, is
2 Find the non-empty sequences oo . ..o} such that: o = ojoh ... 0},
strong-corr(o}) (1<i<k), (0} weak-corr U£+1)(1§,i§k,1);

3 Procedure Extract(c = 0102 ...0k,T., STraces): STraces is
4 i:=1;

5 while i < k do

6 n = |STraces| + 1;

7 Ty :={}

8 STraces := STraces U {T, };

9 op is the prefix of o up to oy;

10 if 35 > i: strong-corr(c;.o;) then

11 o; is the first sequence in o; . .. o} such that strong-corr(c;o;);
12 o= 0op0;.call_Cpreturn_Cy.oj...0k;

13 if (j —i) > 2 then

14 L Extract(oit1...05-1,Tn);

15 else

16 | Tn =T, U{call.Cp.0it1.return Cp};

17 | =17

18 else

19 o = op0;.call_Cpreturn_Chy;

20 if (k —4) > 1 then

21 L Eztract(cit1...0k,Th);

22 else

23 L Ty =Ty U{call-Cy.op.Teturn-Cy };

24 | 1= k;
25 if ¢ # 1 then

26 L o = call C..o.return_C,;
27 Te:=T.U{c};
28 | return STraces;

components that are called by the current one. If this sequence ¢’ is composed of
only one sub-sequence then it is added to a new trace set Ty, of STraces. Otherwise,
the procedure Extract is recursively called with Extract(o’, Ty, STraces). In o,
the sequence o’ is removed and replaced by the actions call_C,.return_C,,. After
the covering of every sub-sequence of o, the procedure Extract eventually checks
whether o needs to be completed to express that this sequence was produced by
a component called by another one: if T, is not equal to 71 then the trace o is
surrounded with call_C. and return_C. to express that o stems from a component
that was previously called by another one. Otherwise, the sequence o remains
unchanged.

Let us illustrate the functioning of the procedure Extract with the example
of Figure 4a, which takes back the trace of Figure 3. This trace was segmented
into seven sequences, which are weakly correlated. We start at o1 = /devices()
(i:=1). The next sequence o2 = /json.htm.Response expresses the behaviours of
another component. But the algorithm has to detect when the component invo-
cation ends. To do so, it looks for the next sequence in the trace that is strongly
correlated with o1. This sequence represents the resuming of the first component
execution after the invocation of another component. In our example, this next
sequence is 03 = Response, which represents the receipt of a response after the ac-
tion /devices(). The sequence o2 is extracted and replaced by the actions call_C2
return_C?2. The procedure is not recursively called as o2 is not composed of several

14 Sébastien Salva*, Elliott Blot

0=01 02 63 04 05 06 07

=1 o=01l.call_C2 return_C2.0304050607

T2={call_C2.02. return_C2}

i:=3 o=01l.call_C2 return_C2.03.call_C3 return_C3.0506607

T3={call_C3.04. return_C3}

i:=5 o=0o1l.call_C2 return_C2.03.call_C3 return_C3.
o5.call_C4 return_C4.07 c1
] Il
T4={call_C4.06. return_C4} @ /c%l\:a
i . c2 c c4
=7 T1:=T1lu{c} (02) (o4) (o6)
END Extract
(a) Procedure Extract steps (b) Hierarchical
organisation of the
components

Fig. 4: Sequence extraction example

weakly correlated action sequences. The sequence o2 is now surrounded with the
actions call_C2 and return_C2 to prepare the LTS synchronisation. The result-
ing sequence is added to the new trace set T>. We go back to the trace o at the
sub-sequence o3 (i:=3). The same process is applied on o4 and later on og until
the algorithm reaches the end of the sequence o (with i:=7). The trace o becomes
o1.call_C2 return_C2.03.call_Cs return_C3.05.call_Cy return_C4.07. The trace
o comes from Traces(SUL), which means that o captures the behaviour of the
root component (assumption H3) that has not been called by another component.
Hence, at the end of the procedure, this trace is not surrounded by synchronisation
actions. o is placed into the trace set T1. At the end of the procedure, we have
recovered the hierarchical structure of components depicted in Figure 4b. And we
get four trace sets, gathered into the set STraces given in Figure 3.

Once the procedure Eztract terminates, Algorithm 1 yields the set Straces =
{T1,Ts,..., Ty} with Ts,..., T, some sets including one action sequence and Ti
a set of modified traces originating from T'races(SUL).

5.3 Step 3: LTS Synchronisation

This step lifts the traces of STraces to the level of LTSs and proposes three LTS
synchronisation strategies, which provide systems of LTSs having different levels
of generalisation.

Given the trace set T' € STraces, a trace 0 = aj ...ay of T is transformed into
the LTS path ¢0 R ILLLUN qr such that the states q1...qr are new states. These
paths are joined by a disjoint union on the state g0 to build a LTS having a tree
form:

Definition 6 (LTS generation) Let T = {o1,..., om} be a trace set. C =
(Q, q0, X, —) is the LTS derived from T where:

Model Generation of Component-based Systems. 15

— @0 is the initial state.
— Q, Y, — are defined by the following rule:

gia=ai(ay)...ak (k)

aj(aq) ag(ag)
q0————""Gid1---Qidk—1 7 Qidk

Once every trace set of STraces is transformed into a LTS, we have a first
system of LTSs SC = (S, C) with C the set of LTSs derived from STraces and S
the set of synchronisation actions of the form call_C; and return_C;, found in the
action sets of the LTSs.

The previous step of COnfECt has segmented and extracted the traces of
Traces(SUL) in such a way that they include synchronisation actions. These ac-
tions were added to prepare the synchronisation of components with LTSs.

We now propose three strategies, which adapt the transitions labelled by syn-
chronised actions to answer to Challenge 2. These are implemented in Algorithm

3.

Algorithm 3: LTS synchronisation strategies

input : System of LTSs SC = (S, C) with C = {C4,...,C,}, strategy
output: System of LTSs SCy = (S5, Cy)
if strategy = Strict Synchronisation then

| return kTail(k = 2, SC);

[V

3 else
a Y(C1,C2) € C? Compute Similarityrrs(C1,Ca);
5 Build a similarity matrix;
6 Group the LTSs into clusters {Cly, ... Cl} such that V(Cy, C2) € Cl? : C1 similar C2 ;
7 foreach cluster Cl = {C1,...,C;} do
8 C'¢1:=Disjoint Union of the LTSs C1,...,Cy;
9 Cy=CyU{Cai};
10 foreach C; = (Q,q0,X,—) € SCy do
11 foreach ¢ N q2 with a = call_C,, or a = return_C,, do
12 Find the Cluster Cl such that C,,, € CI;
13 Replace C,,, by C¢; in the label a;
14 Sy =8y U{a};
15 foreach g, call-Cpreturn-Cop, 0 €— do
16 L Merge (q1, q2);
17 if strategy = Strong Synchronisation then
18 foreach C; = (Q,q¢0,%,—) € Cy do
19 Complete the outgoing transitions of the states of Q so that C; is callable-complete;
20 foreach q; call-Omreturn-Om g2 €— do
21 L Merge (q1, q2);
22 | return kTail(k = 2,SCy)

5.8.1 Strict Synchronisation

Algorithm 1 has previously segmented every trace of Traces(SUL) into sub-sequen-
ces of actions. When a sub-sequence is extracted, it is placed into a new trace
set in STraces and replaced by the actions call_Cj.return_C;. The LTSs of SC,
derived from STraces, do not repetitively call other LTSs and are composed of

16 Sébastien Salva*, Elliott Blot

acyclic paths only. We call this LTS configuration, Strict synchronisation. This
strategy, which is mostly and implicitly implemented in Algorithm 1, eventually
calls the kTail algorithm to merge the similar states found in the LTSs of SC. This
strategy limits over-generalisation, i.e. the fact of generating models expressing
more behaviours than those given in the initial trace set T'races(SUL). This is
more formally captured by the following proposition, which postulates that, before
calling kTail, the traces of SC leading to final states are the traces of Traces(SUL).

Proposition 1 Let SC = (S,C) be a system of LTSs achieved with the Strict
synchronisation strategy (before the call of kTail), with C = {C1,...,Cn}. QF is
the set of final states of the LTS C1 || C2 || -+ || Ch.

Tracesqr(SC) = Traces(SUL).

5.3.2 Weak Synchronisation

This strategy aims at reducing the number of LTSs and allows repetitive compo-
nent calls. Algorithm 1 may indeed have refined too much Traces(SUL), hence
the system of LTSs SC might include several LTSs modelling the functioning of
the same component. This strategy attempts to gather these LTSs by means of
a LTS Similarity coefficient, which evaluates the similarity of two LTSs. Like the
Correlation coefficient, the LTS similarity is defined with a utility function and
factors to be compatible with different sorts of systems:

Definition 7 (LTS Similarity Coefficient) Let C; = (Qi,q0;, X5, —;) (i =
1,2) be two LTSs of the system of LTSs SC = (S,C). Let also fi,... f; be LTS
similarity factors. The LTS Similarity of C1, C2 is defined as:
0 < Similarityrrs(C1,C2) = SF_| f1(C1,C2)aw; < 1 with 0 < f/(C1,Ca) < 1,
w; € Ra‘ and Zle w; = 1.

C1 similar Cy & gef Similarityrrs(C1,C2) > Y, with Y € [0, 1].

We provide two similarity factors below. The first one refers once again to
the component identification, just like the correlation factor fi. The second factor
measures the similarity of two LTSs with regard to the actions they share.

— fi(C1,C2)= 1 iff Vai(a1),az2(az2) € (Xo, U Xc,) \ S, Id(ar) = Id(az), with
Id(a) the assignment in « of the parameters that identify every component.
Otherwise, f{(C1, C2) = 0. This implies that two similar LTSs must have
actions including the same component identification. The factor is not applied
on the synchronised actions of S, which were added by the previous step of
COnfECt;

— f3(C1,C2) = Overlap(Xc, \ S, Xc, \ S), with the overlap of two sets A and
B defined by |A N B|/min(|A|,|B]). Several general similarity coefficients are
available in the literature for comparing the similarity and diversity of sets,
e.g., the coefficients Jaccard or SMC (Tan et al, 2005). We have chosen the
Overlap coefficient because the action sets of two LT'Ss may have different sizes.

The Weak synchronisation strategy is implemented in Algorithm 3 lines (3-
16). It computes the LTS Similarity of every pair of LTSs of SC. The similar
LTSs are then grouped by means of a clustering technique, which uses the LTS
Similarity coefficients. The LTSs of the same cluster are joined with a disjoint

Model Generation of Component-based Systems. 17

; return_C /

union. Furthermore, the labels of the transitions ¢ LLLEEN 2, (1 — Q3
are updated accordingly so that the correct LTSs are being called (Algorithm 3

lines(11-14)). In addition, every sequence qi call-C return-C, q2 is replaced by a

loop (g1, q2) call @ return-O, (q1,¢q2) by merging both states ¢1 and g2.

5.8.83 Strong Synchronisation:

This strategy aims at providing more general models than the Weak strategy, by
assuming that a component C7, which requests services from other components,
may repetitively call them at any of its states. We denote R the set of LTSs
modelling components that are invoked by Ci. We define that C7 is callable-
complete when C1 may call any LTS C2 of R at any of its states:

Definition 8 (Callable-complete LTS) Let SC = (S, C) be a system of LTSs

and C1 = (Q1,401, X1, —1) € C. R stands for the set of LTSs sharing synchronised

actions with Ch. R={C; € C | 1 call-Cs, g2 €—1}.

(1 is callable-complete iff Vg € Q1,VC2 € R,3¢' € Q1 : ¢

call_Cs.return_Co ’
%

The strategy is implemented in Algorithm 3 lines(3-21). As with the Weak
Synchronisation strategy, the similar LTSs of SC are assembled into bigger LT'Ss
and the transitions labelled by synchronisation actions are updated accordingly.
Additionally, every state ¢ of the LTSs is completed with new outgoing transitions

of the form ¢ call-O return-O, q so that the LTSs of SC become callable-complete.
The Weak and Strong synchronisation strategies produce more general systems
of LTSs than the first strategy. This is captured by this proposition:

Proposition 2 Let SC = (S,C) be a system of LTSs achieved with the Weak or
Strong synchronisation strategy (before the call of kTail), with C = {C1,...,Cn}.
QF s the set of final states of C1 || C2 || - || Ch.

Tracesqr(SC) D Traces(SUL).

For the three strategies, the LTSs of SC' = (S, C') may include equivalent states,
which should be joined to generate more concise models. As stated previously, we
use the kTail approach, which merges the states that share the same k-future. We
use k = 2 as recommended by Lorenzoli et al (2008); Lo et al (2012).

Figure 3 illustrates the use of the Weak strategy. Each trace set of STraces
is firstly transformed into a LTS (STEP 3A). As the trace sets are composed of
only one action sequence, we get LTSs having one path. Then, the similar LTSs
have to be grouped. To define the LTS Similarity coefficient, we choose the factor
f5. We compute a similarity matrix by means of the LTS Similarity coefficient.
Figure 5 shows the matrix obtained with the four LTSs of our example. If we
set the LTS similarity threshold Y to 0,5, we observe that two classes of similar
LTSs emerge in this matrix: (C1) and (C2,C3,C4). A clustering technique, e.g.,
the Ward’s method (Willett, 1988), can help automate this grouping of similar
LTSs. The similar LTSs are then joined by means of a disjoint union. As we

choose the Weak synchronisation strategy, the transition sequences of the form
call_C,,return_C,,

Q1 g2 have been replaced with loops in C1. We finally obtain

18 Sébastien Salva*, Elliott Blot

Ci | Co | Cs | Ca
C, | 1 0 0 0
C, | 0 I | 05] 05
Cs | 0 [05] 1 |05
Cs | 0 |05] 05 1

Fig. 5: LTS Similarity matrix example

two LTSs (STEP 3B): C1 expresses the use of the Web interface, C234 models the
component that sends data (temperature, motion detection) to a server. The LTS
Ca34 holds three equivalent state classes (¢3, ¢4, ¢5), (¢6,q7,¢8) and (¢9, ¢10,¢11),
which are merged with kTail (STEP 3C).

6 Implementation

Our approach is implemented in Java and is released as open source. The prototype
tool consists of two applications. The first step of COnfECt, which performs the
trace formatting by means of regular expressions, is implemented in a first tool
called TFormat®'. But, end-users might prefer using their own trace formatting tool
like LogParser, which automatically learns event templates from unstructured logs
(Zhu et al, 2018).

The second application? performs the last steps of the approach. The user
gives as inputs a folder containing formatted trace files, the chosen factors, the
related thresholds and a LTS synchronisation strategy. For the Weak and Strong
strategies, we use a clustering approach based on the Ward’s method, which is a
well-known agglomerative hierarchical clustering method. In short, the LTS clus-
tering is carried out as follows: 1) each LTS is placed into its own initial cluster
and similarity coefficients are computed; 2) the two clusters that have the closest
similarity (greater than the given threshold Y') are merged, similarity coefficients
are updated and so forth until there is no more similar cluster. This approach
avoids the generation of too large clusters and does not need to pre-specify the
cluster number.

7 Preliminary Evaluation

With this implementation of COnfECt, we conducted several experiments in order
to evaluate the following criteria:

— C1 (Component detection): is COnfECt able to detect the correct number
of components? The key contribution of COnfECt is its ability of detecting
sub-sequences in traces and to link them to separate components. We studied
C1 with a real device that we implemented and whose internal architecture is
known. Our knowledge about the system under learning allowed us to study
the inferred LTSs and to check whether these do not capture mixing behaviours
of several real components;

I https://github.com/sasa27/TFormat
2 https://github.com/Elblot/COnfECt-2.0

Model Generation of Component-based Systems. 19

— C2 (Relevance of the models): is COnfECt able to infer concise and readable
models, which express system behaviours and reject abnormal behaviours? C2
investigates how the inferred models accept valid traces including new traces
not used for the model generation and the capability of these models to reject
invalid traces. We compare COnfECt to CSight and kTail, as kTail is used as
baseline in several papers, e.g., (Lo et al, 2012; Ohmann et al, 2014);

— C3 (Efficiency/Scalability): how long does COnfECt take to generate systems
of LTSs? How does COnfECt scale with the size of the trace set? We study the
efficiency and scalability of COnfECt, compared to CSight and kTail.

7.1 Empirical Setup

For this evaluation, we chose a real system that we implemented to be able to
appraise the accuracy of the generated models. The system under learning is the
connected thermostat taken as example in the paper, whose source code has been
made available®. This IoT device controls heating pumps according to external
events and integrates 3 components: a sensor manager coordinating 4 physical
sensors, a component that updates the internal clock of the device by calling a
NTP server, and a Web server allowing the configuration of the device and the
reading of data, e.g. the temperature. These components meet the requirements
given in Section 4 and can be monitored to collect HT'TP traces. This device has
been implemented in such a way that each component may be turned on or off
without blocking the functioning of the others. This feature is important for this
evaluation to derive several different models as the the effect that events have on
the behaviour of the system depend on the set of components being activated.
For instance, if the physical sensors are turned off, then the thermostat will not
start heating pumps when the temperature is below a given threshold. We ran this
IoT device with several component configurations using 1 to 3 components. The
HTTP traces were formatted with our tool TFormat and 10 regular expressions.
These traces have the same form as the trace given in Figure 2. The trace sets are
available here*. The LTS generation was performed on a desktop computer with
1 Intel(R) CPU i5-6500 @ 3.2GHz and 16GB RAM.

We adapted the smallest trace set collected previously to compare COnfECt
and CSight. But we were unable to have results with CSight after 5 hours of
computation, which was our limit for each experiment. We observed that the
first steps of CSight were achieved, but the model-checker returned successive
time-outs while the model refinement step. We suspect that the model-checker
is unable to check the invariant satisfiability on large trace sets. Therefore, to
compare CSight and COnfECt, we have taken back two trace sets available with
the CSight implementation. The first one was extracted from TCP logs, and the
second one from logs of the AlternatingBit protocol.

7.1.1 Factor choice & thresholds assessment

The Correlation and LTS Similarity coefficients have to be defined by setting fac-
tors, weights and thresholds. We took for the experiments the factor combinations

3 https://github.com/sasa27/OpenThermostat
4 https://github.com/Elblot/COnfECt-2.0

20 Sébastien Salva*, Elliott Blot

Configuration # real Components Factors Strict | Weak Strong
Conf. 1 1 f2 > 1; 3 > 0.75 1 1 1
Conf. 2 1 fo>1; f5 > 0.75 1 1 1
Conf. 3 1 f2 > 1; f3 > 0.75 1 1 1
Conf. 4 2 f2 > 0.5; f > 0.75 52 2 2
Conf. 5 2 f2 > 0.6; f5 > 0.75 82 2 2
Conf. 6 2 f2 > 0.6; f5 > 0.75 74 2 2
Conf. 7 3 f2>0.75; f0 > 1 342 342 342
Conf. 8 3 fa>05;f>1 143 143 143
Conf. 9 3 f2 > 0.5; f5 > 0.75 143 3 3
Conf. 10 3 fi>1fl>1 104 3 3

TCP1 2 izl fi>1 29 2 2
Alt.Bitl 2 fi>Lifi>1 100 2 2
TCP2 2 f2 > 15 f3 > 0.49 38 1 1
Alt.Bit2 2 f2 > 1; f3 > 0.95 88 2 2

Table 1: Number of components detected by COnfECt.

fi/fi and fa/f5. The factors f1/fi require that an expert of the system provides
the parameters allowing the identification of all the components of SUL. The sin-
gle thresholds we used with f1/f] are X = Y = 1, which intuitively means that
two action sequences are strongly correlated or that two LTSs are similar iff they
share the same component identification. We applied this factor combination on
the IoT device and on the logs of the TCP and AlternatingBit protocols and ob-
tained 3 configurations (Conf. 10, TCP1, Alt. Bitl) given in Table 1. The factor
combination f2/f5, which is based on the labels found in traces, does not require
to have any specific information about the system under learning. But the choice
of the thresholds has a strong influence on the accuracy of the models. An expert
of the system should assess this accuracy and the thresholds. For the experiments,
we applied this protocol:

1. generation of the first models with the default thresholds X > 0.75,Y > 1;

2. analysis of the models generated with the Strict strategy. If |Straces| is lower
than the expected number of components or if we observe in the traces of
Straces some action sequences that seem to belong to several components, then
increase the threshold X. Conversely, decrease X . To find the most appropriate
value, take X =1 or X = 0.1 and follow a bisection method;

3. when the Weak or Strong synchronisation strategy is chosen, analysis of the
generated LTSs. If two LTSs seem to capture the behaviours of the same com-
ponent, then decrease Y. To find the most appropriate value, take Y = 0.1 and
follow a bisection method.

We applied this protocol on the IoT device and the two protocols with the
configurations Conf. 1 to 9, TCP2 and Alt.Bit2. given in Table 1. Conf. 7 to 9
show the three steps of the protocol.

Finally, we collected and formatted a set of 20 traces (resp. 50) composed of
about 50 actions with Conf. 1-6 (resp. Conf. 9,10) and used a set of 10 traces (98
actions) with the AlternatingBit and TCP case studies.

7.2 C1 (Component detection)

Table 1 lists the number of LTSs inferred by COnfECt. For comparison purposes,
we also recall the exact number of components for each system configuration.

Model Generation of Component-based Systems. 21

The lines Conf. 1-6, 9,10 show the results achieved with COnfECt when the
thresholds X and Y are correctly set after following the protocol defined in Section
7.1.1. The approach detects a correct number of components whatever the strategy
used in Conf. 1 to 3. With Conf. 4-6, 9 and 10, the Strict strategy provides too
many LTSs because of the second step of COnfECt, which refines the traces too
much. But, the Weak and Strong strategies provide a correct component number
because they assemble the similar LTSs together.

Conf. 7 to 9 illustrate the incremental use of COnfECt to detect the appropri-
ate thresholds X and Y. The component detection is false whatever the strategy
used in Conf. 7 and 8. In Conf. 7, we observed that the initial traces were too
much segmented. We hence decreased the threshold X to 0.6 for the Correlation
coefficient and reran COnfECt. With Conf. 8, we detected that no similar LTSs
were detected and decreased the threshold Y to 0.75. With Conf. 9, COnfECt de-
tects the correct number of components with the two last strategies. Thanks to our
knowledge about the SUL implementation, we manually analysed the LTSs built
with the configurations and strategies giving a correct number of components. We
did not detected any mixture of component behaviours, and observed that each
LTS expresses the behaviours of a real component.

With the configurations TCP2 and Alt.Bit2, COnfECt cannot detect compo-
nent behaviours. As the factor fo computes term frequencies, its accuracy depends
on the trace set size. With these configurations, we observed that the trace sets
are too small for calculating relevant frequencies. Either the number of detected
components is false (TCP2) or the models are incorrect (Alt.Bit2).

With Conf. 10, TCP1 and Alt.Bit1, the trace segmentation and the LTS simi-
larity are based on the component identification (factors f1/f1). With these con-
figurations, the number of components is correctly detected with the Weak and
Strong strategies, without adjusting any threshold like with fa/f5.

These experiments show that COnfECt answers to Challenge 1, but for the
factor combination f2/f3, it is required to have a large trace set and to adjust the
factor thresholds. The general functioning of COnfECt is illustrated in Conf. 4-6,
9 and 10: the Strict strategy refines the traces and often returns too many LTSs.
The two last strategies counterbalance the trace refinement.

7.3 C2 (Relevance of the models)

Regarding the results of Table 1, it is worth noting that we infer irrelevant models
if the given thresholds do not allow a correct component detection. As stated
earlier, the threshold choice difficulty depends on the factors. For instance, the
factors fi/fi can each take two values (0 or 1). In contrast, f2/f5 have to be
evaluated with several model generation attempts.

Valid and invalid trace acceptance

We firstly analysed the ability of the generated models in accepting valid and
invalid traces. The former are traces collected from the system under learning,
which were not used for the model generation. The latter are traces including
unexpected actions that should be rejected by models.

22 Sébastien Salva*, Elliott Blot

As the model quality depends on the approaches, the coefficient thresholds and
strategies, we chose to check the trace acceptance on the 30 models produced by
kTail, COnfECt and CSight with the configurations Conf. 4-6, 9,10, TCP1 and
Alt.Bitl. For COnfECt, we recall that the models generated with these config-
urations capture the behaviours of two or more components and are built with
correct thresholds. 70% of the traces collected in these configurations were used
for inferring models, the rest used as valid traces for testing the models.

Then, we automatically generated invalid traces by applying three mutations
on the valid ones: random repetitions of actions, inversion of HTTP requests and
responses, and modifications of the strongly correlated sequences in traces. This
last modification was performed on traces after the second step of COnfECt: for
two consecutive sequences o1 = ai...a 02 = aj ... a?c, we inverted the two actions
ay and a’. We produced 120 traces of 40 actions for Conf. 4-6, 9-10 and 30 traces
of 20 actions for the configurations TCP1 and Alt.Bitl.

Figure 6a illustrates the rates of valid traces accepted by the models. In com-
parison to kTail, the Strict strategy of COnfECt gives models that accept slightly
less valid traces. The systems of LTSs obtained with this strategy are indeed less
general because of the partitioning of the initial trace set (less states are merged
in final models). Whatever the configuration, the models inferred by the two last
strategies of COnfECt accept more valid traces than the models of kTail. This
increase is a consequence of allowing repetitive component calls in the LTSs. Un-
surprisingly, the Strong strategy provides the systems of LTSs that accept the
highest rates of valid traces (between 90 and 100 %) because these LTSs are
callable-complete. For the two last configurations, we observe that 100% of the
traces are accepted by the models, whatever the approach used. We suspect here
that the initial trace sets are not sufficiently large to observe differences between
the approaches. We tried to increase these traces sets, but CSight has not been
able to return a model. Figure 6b depicts the rates of invalid traces accepted
by the models given by kTail, COnfECt and CSight. We observe that the Weak
strategy and kTail provide the same rates with Conf 1. to 10. The Strong strategy
builds models that accept between 5,5 and 17 % of invalid traces. After inspection,
these invalid traces are mostly composed of repetitive HTTP requests, which are
accepted because the models are callable-complete. CSight provides more correct
models than COnfECt with TCP1, but less correct models with Alt.Bitl.

From these experiments, we conclude that COnfECt, with the Weak and Strong
strategies, outperforms kTail and is at least as efficient as CSight. The Weak
strategy provides models that accept slightly more valid traces than kTail and
rejects the same amount of invalid traces as the other approaches. The Strong
strategy tends to give models that accept more valid traces but also more invalid
ones.

Model readability

We evaluated the readability of the models generated by COnfECt, CSight and
kTail by measuring the model sizes. The first six columns of Table 2 give the num-
ber of states and transitions with these configurations. As expected, we obtain
bigger LTSs with COnfECt than the ones inferred with kTail and CSight (except
with Conf. 1-3 since SUL has only one component). With the two last configura-
tions, we observe that the models inferred by CSight and kTail are close in size

Model Generation of Component-based Systems. 23

® ®E £ weee® eepeR
Q Q9 Q Q009 Q0009
8 88 =} ® 885988 88888
(=] oo (=] (=] coooo o000
2828 2 a S2838 3588838
B FFs a -
oo [=Y=}
RN R @ . e e
£ 48 B0 e B s B
3 SR R o %R
oo R KRR ~&w 0 o
~Q [=X=] we e~ ~R~
4 = N ~
N ININ ~ ~
CONF. 4 CONF.5 CONF. 6 CONF.9 CONF.10 TCP1 ALT.BIT.1

mKtail mStrict mWeak mStrong mCsight

(a) Valid traces

16,67%

11,57%
10,43%
10,00%
10,00%
11,00 %

5,53%
5,53%

RRR R RR ® RBRR R’RR ® R EN R RE R
[=N=N=] [=N=N=] o (=R =] [=N=N=] [=N=] o [=N=N=N=]
S99 S99 S S99 S99 S99 S | 99989
oo coo o (=R [=N=-N=-) oo o (==}

8
~
)
o

CONF. 4 CONF.5 CONF.6 CONF.9 CONF. 10 TCP1 ALT.BIT.1
EKtail mStrict ®Weak MBStrong BCsight

I 5,53%

(b) Invalid traces

Fig. 6: Rates of traces accepted by models.

and much more concise than the models of COnfECt. This outcome stems from
our algorithm, which completes LTSs with transitions labelled by synchronisation
actions. With the Strict strategy, the state number is increased by 1520 % because
many LTSs are built, are not joined later, and few equivalent states are found in
these LTSs. We observed here that this strategy returns too much LTSs with large
trace sets and should be restricted to small trace sets only. The state number is
increased by 50 % with the Weak strategy and remains the same with the Strong
one.

The transition labelled by synchronisation actions help interpret the compo-
nent combination and are required to later compose LTSs. But, these are not

24 Sébastien Salva*, Elliott Blot

Cont. kTail CSight Strict Weak Strong Strict+hide | Weak+hide | Strong+hide

! #st | #tr | #st | #tr F#st Ftr F#st | F#tr | #st | #tr #st #tr | #st F#tr Fst F#tr
Conf. 1 31 64 / / 31 64 31 64 31 64 31 64 31 64 31 64
Conf. 2 7 12 / / 7 12 7 12 7 12 7 12 7 12 7 12
Conf. 3 4 4 / / 4 4 4 4 4 4 4 4 4 4 4 4
Conf. 4 53 114 / / 620 598 77 158 61 144 402 354 63 113 36 64
Conf. 5 59 117 / / 740 699 83 161 62 141 435 371 67 113 37 58
Conf. 6 24 54 / / 438 422 34 79 23 50 249 214 24 52 7 11
Conf. 9 92 229 / / 2066 | 1916 | 155 360 75 179 1195 | 964 116 235 41 [
Conf. 10 95 235 / / 1610 | 1581 160 | 382 77 189 | 1056 | 953 117 247 43 81
TCP1 17 19 12 19 864 832 23 32 27 44 577 476 16 18 15 17
Alt.Bitl 22 28 28 29 203 174 33 54 36 67 127 86 18 29 18 30

Table 2: Sizes of the LTSs obtained with kTail CSight and the three strategies of
COnfECt. ”hide” refers to the removal of the LTS transitions labelled by synchro-
nisation actions. #st and #tr stand for the number of states and transitions.

significant if one wants to focus on the component behaviours only. Table 2 pro-
vides, in the last six columns, the number of states and transitions after applying
the hide operation to remove the transitions labelled by synchronisation actions.
The models generated by COnfECt become more concise than those obtained with
kTail. More precisely, the state number is increased by 14 % with the Weak+hide
strategy in comparison to kTail. But the former divides the system behaviours
into several smaller LT'Ss, which are much more readable. The state number is
reduced by 40 % when using the Strong+hide strategy. For instance, the number
of states is equal to 41 in Conf. 9, whereas the LTS achieved with kTail has 92
states. The Strong+hide strategy builds models whose sizes are close to the sizes
of the models inferred by CSight.

We compared the models generated by COnfECt and CSight with the two
last configurations to evaluate their differences. The systems of LTSs of COnfECt
are usually less readable as they contain additional synchronisation actions. If we
apply the Strong+hide strategy, both CSight and COnfECt generate models of
similar sizes though. The other differences of behaviours mainly come from the
functioning of the two approaches that do not target the same kind of systems.
For example, the figures 7a, 7b illustrate the models pid0 pidl inferred by CSight
for the AlterbatingBit protocol, and the figures 7c, 7d show the models C1 Cs
given by COnfECt. For the first component, the CFSM of CSight is here more
concise, but it accepts more invalid behaviours as it allows the successive sending
of the same bit instead of incrementing it. For the second component, the mod-
els pidl and C2 have the same size but seem different. The initial state of the
model pidl of CSight only accepts the input m0, whereas C> accepts both the ac-
tions m0 and m1. This difference comes from these two observations: 1) COnfECt
builds more general models with the Strong strategy; 2) COnfECt builds models
of components that control other components whereas CSight builds models of au-
tonomous components. Here, the component C7 requests a service to Ca2 by sends
a first action m0, therefore C> will always start by executing the action m0.

These experiments show that the models inferred by our approach are rele-
vant on the condition that the correct coefficient thresholds are given. The three
strategies help manage the generalisation level, which relates to Challenge 2. We
showed that the Strong+hide strategy tends to provide readable models that ac-
cept the highest ratio of valid traces, with a reasonable ratio of invalid ones. If the
user wishes to minimise the over-generalisation problem in models but still wants
readable ones, he/she can apply the Weak+hide strategy instead.

Model Generation of Component-based Systems. 25

chO ? ml

1mO(role=0)

O,

IA%a0(role=0) IA?al (role=0)

© -

kend_m(role=0)

Fig. 7: Models generated by CSight and COnfECt (Strong-+hide strategy) for the
AlternatingBit protocol

26 Sébastien Salva*, Elliott Blot

7.4 C3 (Efficiency/Scalability)

trict Straf Weak Strat
%0 Strict Strategy 5500 ‘eak Strategy

3000 R?=0,9983257869
400 R2=0,9976331342

—8—Trac ——8— Trace Est.
< 2500 <S
Gen. Gen.
8 \Tail g 2000 ———LTS Clus-
< g tering
H 4 Total £ 1500 KTail
F 2 =t Total
e 02 1000 e X2
500
[}
0 100 200 300 400 500 600 700 00 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Nb traces Nb traces

(a) (b)

Strong Strategy

3000 - R2=0,9975752003

—8—Trace Est.
<S
Gen.

———— LTS Clus-
tering
KTail

e Total

e X2

Time in seconds

0 100 200 300 400 500 600 700 800 900 1000

Nb traces.
(c)

Fig. 8: Execution times vs. nb of traces

We experimented COnfECt and kTail with the parameters of Conf. 9 and
several trace sets containing from 10 to 1000 traces composed of about 50 actions.
As stated earlier, we were unable ro run CSight with these traces. Therefore, we
also measured the execution times of Csight, kTail and COnfECt with the two
traces sets of the TCP and AlternatingBit protocols.

Our implementation of kTail required less than 1 second to generate models.
The execution times of COnfECt are illustrated in Figures 8a-8c and given in
seconds. In the figures, the curves “Total” represent the complete execution times.
These are detailed with the other curves, which depict the execution times of some
sub-steps of COnfECt: Trace Analysis & Extraction, LTS clustering, and call of
kTail. With the Strict strategy and trace sets having no more than 100 traces
(10, 20, 50, 100), COnfECt builds systems of LTSs in less than 3 seconds. We
observed that the evaluation of the factor f2 takes most of the time as the action
set needs to be scanned with two nested loops. Hence, its is not surprising to
observe that the tendency curve confirms that the time complexity is quadratic.
The time executions substantially increase with the Weak and Strong strategies.
With 100 traces, the execution time go up to 28 seconds. As the curves “LTS
clustering” are close to the curves “Total”, we can conclude that the additional
time is consumed by the Ward clustering technique, which also has a quadratic
complexity. With the traces of the TCP and AlternatingBit protocols, we observed
that CSight is significantly slower than COnfECt. The former respectively takes
3552ms and 14657ms to build models, whereas COnfECt takes 48ms and 46ms.

Model Generation of Component-based Systems. 27

Furthermore, the time-outs we observed on the current CSignt implementation
with large trace sets also suggests that CSignt might hardly scale to large systems
producing large log files. On the contrary, COnfECt is able to take large trace
sets even when we run it on a moderate budget computer. With 50000 actions
(1000 traces), the model generation requires around 50 minutes, which remains a
reasonable execution time.

Concerning the memory consumption, these experiments required less than 16
Go of memory. If the trace set exceeds 70000 actions, more memory is required.
We observed that the space complexity remains linear w.r.t. the trace number.

These results suggest that COnfECt can handle large trace sets and infer mod-
els in reasonable time. As the execution time of COnfECt follows a quadratic curve,
it is however difficult to claim that it scales well. But the current implementation
of COnfECt is absolutely not optimised: the algorithm Trace Analysis & Extrac-
tion could be parallelised. The Ward clustering technique could also be replaced
by another algorithm having a lesser complexity.

7.5 Threats to Validity

There are many application and system contexts, but this preliminary experimen-
tal evaluation is only applied on two protocols and an IoT device, initialised with
different configurations. This is a threat to external validity, in the sense that the
results about the component detection and the model accuracy cannot be gen-
eralised to all software systems. This is why the experiments deliberately avoid
drawing any general conclusion. We chose to mainly concentrate our experimenta-
tions on one system that we implemented to be able to appraise the capability of
COnfECt of returning correct models. This threat is somewhat mitigated by the
fact that we used HT'TP traces as inputs, which can be collected from numerous
Web applications. In addition, one of the components of the IoT device is a small
Web server running a classical Web site. We hence believe that our tool can be eas-
ily generalised to Web applications. But, it is manifest that more experimentations
are required, on further kinds of systems.

The generalisation of our approach is also restricted by the three hypotheses
H1 to H3. In H1, we chose to consider that the internal calls among components are
removed within the traces. However, if the synchronisation actions are available in
traces, our algorithm may be modified to take them into consideration instead of
adding synchronisation actions. We assume that components are not executed in
parallel (H2) and that there exists a single root component (H3). With some fac-
tors, e.g., f1/f1, we could update COnfECt to consider systems having several root
components calling other components in parallel. This could be done by identifying
every component with the factor fi and then splitting traces into sub-traces when
parallel executions are detected with an analysis of the action timestamps. But,
at the moment, this modification depends on the employed factors and cannot be
generalised.

There are also several threats to internal validity. Firstly, like all the other
model learning approaches using traces, the more the traces, the more complete the
models will be. Furthermore, our approach uses similarity factors and thresholds,
like the approaches used in machine learning. This kind of approach requires some
expertise to choose the right factors and thresholds. In our case, the generation of

28 Sébastien Salva*, Elliott Blot

accurate models appears to be laborious without having any expertise allowing to
adjust the component detection. We indeed observed that an expert is necessary
either to provide some information about the components (e.g., means to identify
components) or to be able to observe wrong behaviours in the models and to
follow the threshold choice protocol we listed in Section 7.1. Conversely, if the
model learning is supervised by an expert, COnfECt infers relevant models in
reasonable time delays.

8 Conclusion

We have presented COnfECt, a model learning method that generates systems of
LTSs from execution traces. A system of LTSs captures the behaviours of com-
ponents and their synchronisations. COnfECt is made up of several algorithms,
themselves based on some machine learning techniques to detect components in
traces. Additionally, it proposes three LTS synchronisation strategies, which help
manage the model generalisation. Learned models are a good mean to ease bug
detection (Durand and Salva, 2015; Ohmann et al, 2014; Mariani and Pastore,
2008). As systems of LTSs show how components behave and are synchronised,
we believe that these models offer better readability and comprehensibility than
those inferred by classical model learning tools for finding and locating bugs. Here
a bug can be more precisely located on a LTS and hence on a specific component.

In future work, we firstly intend to perform more evaluations of COnfECt on
several kinds of systems. From the lessons learned through this work, it appears
that another immediate line of future work is to reduce the requirements of the ap-
proach. COnfECt, which uses machine learning techniques, needs to be supervised
by an expert of the system in order to infer correct models. We intend to revise
the COnfECt algorithm to better integrate this supervision need. For instance,
we could help engineers find the parameter assignments used to identify compo-
nents. Or we could ask them the expected number of components and find the
most appropriate factors and thresholds. Another challenge is to get rid of some
hypotheses, e.g., the need to collect traces from components having synchronous
interactions.

Several approaches, e.g., (Beschastnikh et al, 2011; Ohmann et al, 2014; Beschast-
nikh et al, 2014) mine temporal invariants from logs to increase the accuracy of
the generated models. This technique sounds interesting but cannot be directly
applied to COnfECt as we split traces and build several LTSs. We need to study
if it is of interest to mine invariants after the trace extraction. A system of LTSs
also offers the possibility to derive models having different levels of abstraction, by
hiding some components or not. This notion of abstraction sounds interesting and
needs more investigations. For instance, bug or security analysis could be focused
on some components only with respect to a given risk criterion, while reducing the
analysis efforts.

9 Acknowledgement

Research supported by the French Project VASOC (Auvergne-Rhone-Alpes Re-
gion) https://vasoc.limos.fr/

Model Generation of Component-based Systems. 29

References

Aichernig BK, Tappler M (2017) Learning from faults: Mutation testing in active
automata learning - mutation testing in active automata learning. In: NASA
Formal Methods - 9th International Symposium, NFM 2017, Moffett Field, CA,
USA, May 16-18, 2017, Proceedings, pp 19-34, DOI 10.1007/978-3-319-57288-8_
2

Alur R, Cerny P, Madhusudan P, Nam W (2005) Synthesis of interface speci-
fications for java classes. SIGPLAN Not 40(1):98-109, DOI 10.1145/1047659.
1040314

Ammons G, Bodik R, Larus JR (2002) Mining specifications. SIGPLAN Not
37(1):4-16, DOI 10.1145/565816.503275

Angluin D (1987) Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2):87 — 106

Antunes J, Neves N, Verissimo P (2011) Reverse engineering of protocols from net-
work traces. In: Reverse Engineering (WCRE), 2011 18th Working Conference
on, pp 169-178, DOI 10.1109/WCRE.2011.28

Berg T, Jonsson B, Raffelt H (2006) Regular inference for state machines with
parameters. In: Baresi L, Heckel R (eds) Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, vol 3922, Springer Berlin Hei-
delberg, pp 107-121, DOI 10.1007/11693017_10

Beschastnikh I, Brun Y, Schneider S, Sloan M, Ernst MD (2011) Leveraging ex-
isting instrumentation to automatically infer invariant-constrained models. In:
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ACM, New York, NY, USA,
ESEC/FSE '11, pp 267-277

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A (2014) Inferring models of
concurrent systems from logs of their behavior with csight. In: Proceedings of
the 36th International Conference on Software Engineering, ACM, New York,
NY, USA, ICSE 2014, pp 468-479, DOI 10.1145/2568225.2568246, URL http:
//doi.acm.org/10.1145/2568225.2568246

Biermann A, Feldman J (1972) On the synthesis of finite-state machines from
samples of their behavior. Computers, IEEE Transactions on C-21(6):592-597,
DOI 10.1109/TC.1972.5009015

van der Bijl M, Rensink A, Tretmans J (2004) Compositional testing with ioco.
In: Petrenko A, Ulrich A (eds) Formal Approaches to Software Testing, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 86—-100

Cohen WW, Ravikumar P, Fienberg SE (2003) A comparison of string distance
metrics for name-matching tasks. In: Proceedings of the 2003 International Con-
ference on Information Integration on the Web, AAAI Press, IIWEB’03, pp
73-78

Dallmeier V, Knopp N, Mallon C, Fraser G, Hack S, Zeller A (2012) Automatically
generating test cases for specification mining. IEEE Trans Softw Eng 38(2):243—
257, DOI 10.1109/TSE.2011.105

Dupont P (1996) Incremental regular inference. In: Proceedings of the Third ICGI-
96, Springer, pp 222-237

Durand W, Salva S (2015) Passive testing of production systems based on model
inference. In: ACM/IEEE International Conference on Formal Methods and
Models for Codesign, MEMOCODE 2015, Austin, TX, USA,, ACM, Austin,

30 Sébastien Salva*, Elliott Blot

Texas, USA, pp 138-147

Ernst MD, Cockrell J, Griswold WG, Notkin D (1999) Dynamically discovering
likely program invariants to support program evolution. In: Proceedings of the
21st International Conference on Software Engineering, ACM, New York, NY,
USA, ICSE '99, pp 213-224

Falcone Y, Jaber M, Nguyen TH, Bozga M, Bensalem S (2011) Runtime
Verification of Component-Based Systems. In: Barthe G, Pardo A, Schnei-
der G (eds) SEFM 2011 - Proceedings of the 9th International Confer-
ence on Software Engineering and Formal Methods, Springer, Montevideo,
Uruguay, Lecture Notes in Computer Science (LNCS), vol 7041, pp 204-220,
DOI 10.1007/978-3-642-24690-6_15, URL https://hal.archives-ouvertes.
fr/hal-00642969

Fu Q, Lou JG, Wang Y, Li J (2009) Execution anomaly detection in distributed
systems through unstructured log analysis. 2009 Ninth IEEE International Con-
ference on Data Mining pp 149-158

Groz R, Li K, Petrenko A, Shahbaz M (2008) Modular system verification by
inference, testing and reachability analysis. In: Suzuki K, Higashino T, Ulrich
A, Hasegawa T (eds) Testing of Software and Communicating Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 216233

Hangal S, Lam MS (2002) Tracking down software bugs using automatic anomaly
detection. In: Proceedings of the 24th International Conference on Software
Engineering, ACM, New York, NY, USA, ICSE ’02, pp 291-301, DOI 10.1145/
581339.581377

Hossen K, Groz R, Oriat C, Richier J (2014) Automatic model inference of web
applications for security testing. In: Seventh IEEE International Conference
on Software Testing, Verification and Validation, ICST 2014 Workshops Pro-
ceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, pp 22-23, DOI
10.1109/ICSTW.2014.47

Howar F, Steffen B, Jonsson B, Cassel S (2012) Inferring canonical register au-
tomata. In: Kuncak V, Rybalchenko A (eds) Verification, Model Checking, and
Abstract Interpretation, Lecture Notes in Computer Science, vol 7148, Springer
Berlin Heidelberg, pp 251-266, DOI 10.1007/978-3-642-27940-9_17

Krka I, Brun Y, Popescu D, Garcia J, Medvidovic N (2010) Using dynamic ex-
ecution traces and program invariants to enhance behavioral model inference.
In: Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ACM, New York, NY, USA, ICSE ’10, pp 179-182

Lo D, Mariani L, Santoro M (2012) Learning extended fsa from software: An
empirical assessment. Journal of Systems and Software 85(9):2063 — 2076, DOI
http://dx.doi.org/10.1016/j.jss.2012.04.001, URL http://www.sciencedirect.
com/science/article/pii/S0164121212001008, selected papers from the 2011
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)

Lorenzoli D, Mariani L, Pezzé M (2008) Automatic generation of software behav-
ioral models. In: Proceedings of the 30th International Conference on Software
Engineering, ACM, New York, NY, USA, ICSE’08, pp 501-510

Makanju A, Zincir-Heywood AN, Milios EE (2012) A lightweight algorithm for
message type extraction in system application logs. IEEE Transactions on
Knowledge and Data Engineering 24(11):1921-1936, DOI 10.1109/TKDE.2011.
138

Model Generation of Component-based Systems. 31

Mariani L, Pastore F (2008) Automated identification of failure causes in system
logs. In: Software Reliability Engineering, 2008. ISSRE 2008. 19th International
Symposium on, pp 117-126, DOI 10.1109/ISSRE.2008.48

Mariani L, Pezze M (2007) Dynamic detection of cots component incompatibility.
IEEE Software 24(5):76-85, DOI http://doi.ieeecomputersociety.org/10.1109/
MS.2007.138

Mariani L, Pezzé M, Santoro M (2017) Gk-tail+ an efficient approach to learn
software models. IEEE Transactions on Software Engineering 43(8):715-738,
DOI 10.1109/TSE.2016.2623623

Meinke K, Sindhu M (2011) Incremental learning-based testing for reactive
systems. In: Gogolla M, Wolff B (eds) Tests and Proofs, Lecture Notes in
Computer Science, vol 6706, Springer Berlin Heidelberg, pp 134-151, DOI
10.1007/978-3-642-21768-5_11

Messaoudi S, Panichella A, Bianculli D, Briand L, Sasnauskas R (2018) A
search-based approach for accurate identification of log message formats. In:
Proceedings of the 26th Conference on Program Comprehension, ACM, New
York, NY, USA, ICPC ’18, pp 167-177, DOI 10.1145/3196321.3196340, URL
http://doi.acm.org/10.1145/3196321.3196340

Ohmann T, Herzberg M, Fiss S, Halbert A, Palyart M, Beschastnikh I, Brun
Y (2014) Behavioral resource-aware model inference. In: Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineer-
ing, ACM, New York, NY, USA, ASE ’14, pp 19-30

Pastore F, Micucci D, Mariani L (2017) Timed k-tail: Automatic inference of
timed automata. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp 401-411, DOI 10.1109/ICST.2017.43

Petrenko A, Avellaneda F, Groz R, Oriat C (2017) From passive to active fsm
inference via checking sequence construction. In: Yevtushenko N, Cavalli AR,
Yenigiin H (eds) Testing Software and Systems, Springer International Publish-
ing, Cham, pp 126-141

Pradel M, Gross TR (2009) Automatic generation of object usage specifications
from large method traces. In: Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, IEEE Computer Society,
Washington, DC, USA, ASE ’09, pp 371-382

Raffelt H, Steffen B, Berg T (2005) Learnlib: A library for automata learning and
experimentation. In: Proceedings of the 10th International Workshop on Formal
Methods for Industrial Critical Systems, ACM, New York, NY, USA, FMICS
’05, pp 62-71, DOI 10.1145/1081180.1081189

Salva S, Blot E (2018) Confect: An approach to learn models of component-based
systems. In: Proceedings of the 13th International Conference on Software Tech-
nologies, ICSOFT 2018, Porto, Portugal, July 26-28, 2018., pp 298-305, DOI
10.5220/0006848302980305

Salva S, Blot E, Laurengot P (2018) Combining model learning and data analysis to
generate models of component-based systems. In: Testing Software and Systems
- 30th IFIP WG 6.1 International Conference, ICTSS 2018, C4idiz, Spain, Oc-
tober 1-3, 2018, Proceedings, pp 142-148, DOI 10.1007/978-3-319-99927-2_12

Shahbaz M, Groz R (2013) Analysis and testing of black-box component based sys-
tems by inferring partial models. Software Testing, Verification and Reliability
DOI 10.1002/stvr.1491

32 Sébastien Salva*, Elliott Blot

Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining, (First Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Tappler M, Aichernig BK, Bloem R (2017) Model-based testing iot communi-
cation via active automata learning. In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp 276287, DOI
10.1109/ICST.2017.32

Vaarandi R, Pihelgas M (2015) Logcluster - a data clustering and pattern mining
algorithm for event logs. In: 2015 11th International Conference on Network and
Service Management (CNSM), pp 1-7, DOI 10.1109/CNSM.2015.7367331

Willett P (1988) Recent trends in hierarchic document clustering: a critical review.
Information Processing & Management 24(5):577-597

Yoon KP, Hwang CL (1995) Multiple attribute decision making: An introduction
(quantitative applications in the social sciences)

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2018) Tools and benchmarks
for automated log parsing. CoRR abs/1811.03509, URL http://arxiv.org/
abs/1811.03509, 1811.03509

